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Abstract. The soft SVD is a robust matrix decomposition algorithm and a key component of4
matrix completion methods. However, computing the soft SVD for large sparse matrices is often5
impractical using conventional numerical methods for the SVD due to large memory requirements.6
The Rank-Restricted Soft SVD (RRSS) algorithm introduced by Hastie et al. addressed this issue by7
sequentially computing low-rank SVDs that easily fit in memory. We analyze the convergence of the8
standard RRSS algorithm and we give examples where the standard algorithm does not converge.9
We show that convergence requires a modification of the standard algorithm, and is related to non-10
uniqueness of the SVD. Our modification specifies a consistent choice of sign for the left singular11
vectors of the low-rank SVDs in the iteration. Under these conditions, we prove linear convergence of12
the singular vectors using a technique motivated by alternating subspace iteration. We then derive a13
fixed point iteration for the evolution of the singular values and show linear convergence to the soft14
thresholded singular values of the original matrix. This last step requires a perturbation result for15
fixed point iterations which may be of independent interest.16
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1. The Rank-Restricted Soft SVD. In this paper we consider the following19

rank-restricted matrix decomposition problem,20

(1.1) min
A∈Rn×r,B∈Rm×r

1

2
‖X −AB>‖2F +

λ

2
(‖A‖2F + ‖B‖2F )21

where X ∈ Rn×m is considered the input to the problem, r ≤ p ≡ min{m,n} is22

the rank restriction, and λ is a regularization parameter. The product AB> is an23

approximation of X in the Frobenius norm with rank at most r. In [11, 9] it was24

shown that when A,B solve (1.1) the product AB> solves,25

(1.2) min
Z : rank(Z)≤r

1

2
‖X − Z‖2F + λ‖Z‖∗26

where the nuclear norm ‖Z‖∗ is the sum of the singular values of Z. The relationship27

between these solutions suggests that AB> is a robust low-rank approximation to28

X. This approximation is a key component of many matrix completion algorithms29

[9, 11, 4, 5]. In this paper we will analyze a numerical method for solving (1.1)30

proposed by Hastie et al. in [9]. We will show that a modification is required to31

obtain convergence, and we give the first complete proof of convergence.32

The problem (1.1) is called the Rank-Restricted Soft SVD (RRSS) because the so-33

lution involves soft-thresholding of the singular value decomposition (SVD). Given the34

reduced SVD, X = USV > (U ∈ Rn×p, S ∈ Rp×p, V ∈ Rm×p where p ≡ min{m,n}),35

the solution to (1.1) is found by first soft-thesholding the singular values,36

D ≡
√

(S − λI)+ =
√

max{0, S − λI}37
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2 M. PANAGODA, T. BERRY, AND H. ANTIL

and then defining Aopt = UDIp×r and Bopt = V D>Ip×r [9]. When X is full matrix,38

a standard or partial SVD can be used to obtain this solution. However, in many39

applications such as matrix completion, X is a sparse matrix that is too large to be40

stored as a full matrix. Motivated by these applications, in [9] Hastie et al. introduced41

a fast and memory efficient alternating ridge regression algorithm shown as Algorithm42

1 below.43

Algorithm 1.1 Alternating Directions Optimization for (1.1)

Inputs: An n×m matrix X, rank restriction r, and regularization parameter λ
Outputs: An n× r matrix A and an m× r matrix B

Initialize A as a random n× r matrix and Ap = Bp = 0

while
||A−Ap||max

||A||max
+
||B−Bp||max

||B||max
> tol do

Ap = A, Bp = B
Update B leaving A fixed:

B ← X>A(A>A+ λIr×r)
−1

Update A leaving B fixed:

A← XB(B>B + λIr×r)
−1

end while

We first consider a simplistic approach to solving (1.1) shown in Algorithm 1.44

This method is motivated by the alternating directions method of optimization [12, 2].45

The objective function in (1.1) is not convex as a function of both A and B together,46

however, when either A or B is fixed the objective function is convex and quadratic47

in the other. For example when A is fixed, we can rewrite the objective function in48

(1.1) as,49

N∑
i=1

1

2
||Xi −ABi||22 +

λ

2
||Bi||22 + c1 =

N∑
i=1

1

2
B>i (A>A+ λIr×r)Bi −B>i A>Xi + c250

where Xi is the i-th column of X and Bi is the i-th column of B> (c1, c2 are constants51

with respect to B). The optimization problems for each column of B> are independent52

and the optimal solution is Bi = (A>A + λIr×r)
−1A>Xi. Combining these columns53

we find the optimal solution for B, when A is fixed, has the closed form solution,54

X>A(A>A + λIr×r)
−1. If we then hold B fixed, we have a similar optimization55

problem for A with optimal solution XB(B>B + λIr×r)
−1.56

While the alternating directions method does converge, as shown in Figure 1(right57

panel) it has slow convergence even when X is approximately low-rank . Hastie et al.58

noticed that the Algorithm 1 looks like a power iteration method, since at each step59

we multiply the current A or B by either X or X> respectively [9]. Thus, motivated60

by the idea of orthogonal power iteration, Hastie et al. introduced the idea of using61

an SVD between each alternation in order to orthogonalize the columns of A and B.62

Notice that A and B are m×r and n×r respectively, so for r � min{m,n} these SVDs63

will often be computable even when the full SVD of X is impractical. These insights64

led Hastie et al. to introduce Algorithm 1.2 in [9]. The authors in [9] suggested that65

the approach used to show convergence of orthogonal power iteration (see for example66

[8] Theorem 8.2.2, also [1]) could be applied to Algorithm 1.2. In Section 2 we will67

confirm that the method of [8] can indeed be adapted to show convergence of the68
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Fig. 1. For a full-rank X matrix (left) Algorithms 1 and 1.3 have similar performance, however
when X is approximately low-rank (right) Algorithm 1.3 is significantly faster. In both examples X
is 500 × 500 and we set r = 10 and λ = 0.5 and the minimum cost is computed using Aopt, Bopt.
In the left panel the entries of X are independent standard Gaussian random variables. In the right
panel Ã, B̃ are 500× 10 matrices with independent standard Gaussian entries and X = ÃB̃>+ 10X̃
where X̃ is 500× 500 with standard Gaussian entries.

singular vectors. However, a more detailed analysis is required to show convergence69

of the singular values, as we will show in Section 3. Moreover, Algorithm 1.2 can70

fail to converge or converge to a non-optimal stationary point due to a subtle issue71

involving the non-uniqueness of the SVD.72

Algorithm 1.2 Rank-Restricted Soft
SVD [9]

Inputs: An n×m matrix X,
Rank restriction r, and
Regularization parameter λ

Outputs: An n× r matrix A and
An m× r matrix B

Initialize D = Ir×r
Initialize U ∈ Rn×r a random

orthonormal matrix
Initialize A = UD and Ap = Bp = 0

while
||A−Ap||max

||A||max
+
||B−Bp||max

||B||max
> tol

do
Set Ap = A, Bp = B
Update B leaving A fixed:

B ← X>A(D2 + λIr×r)
−1

Find the SVD: BD = USV >

D ← S
1
2

B ← UD
Update A leaving B fixed:

A← XB(D2 + λIr×r)
−1

Find the SVD: AD = USV >

D ← S
1
2

A← UD
end while

Algorithm 1.3 Modified Rank-
Restricted Soft SVD

Inputs: An n×m matrix X,
Rank restriction r, and
Regularization parameter λ

Outputs: An n× r matrix A and
An m× r matrix B

Initialize D = Ir×r
Initialize U ∈ Rn×r a random

orthonormal matrix
Initialize A = UD and Ap = Bp = 0

while
||A−Ap||max

||A||max
+
||B−Bp||max

||B||max
> tol

do
Set Ap = A, Bp = B
Update B leaving A fixed:

B ← X>A(D2 + λIr×r)
−1

Find the SVD: BD = USV >

D ← S
1
2 , W = diag(sign(V >~1))

B ← UWD
Update A leaving B fixed:

A← XB(D2 + λIr×r)
−1

Find the SVD: AD = USV >

D ← S
1
2 , W = diag(sign(V >~1))

A← UWD
end while

73
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4 M. PANAGODA, T. BERRY, AND H. ANTIL

1.1. Proposed Algorithm. Despite the similarity of Algorithm 1.2 to orthog-74

onal power iteration, there is a key difference which can cause Algorithm 1.2 to fail to75

converge. Orthogonal power iteration uses the QR factorization, which is naturally76

unique when you specify that the the diagonal entries of R are non-negative. The77

SVD on the other hand does not have a natural choice of sign for the singular vectors78

[3]. The SVD is only unique up to a choice of sign since for any matrix W which is79

diagonal with diagonal entries in {−1, 1} we have,80

USV > = UWSWV > = ŨSṼ >.81

This non-uniqueness means that many SVD algorithms will return different choices82

of W each time they are run (due to random initialization). This can lead to failure83

of Algorithm 1.2 to converge, simply due to oscillations in A and B caused by varying84

implicit choices of W in the SVD steps. Moreover, as we will show in Section 4, the85

different choices of W correspond to alternate stationary points of the cost function86

in (1.1).87

To address these issues, we introduce Algorithm 1.3 which is a modification of88

Algorithm 1.2. The new aspect of Algorithm 1.3 is that, after each SVD, we make89

a unique choice of sign for the left singular vectors. This seemingly minor addition90

proves critical for convergence as shown in Figure 2 and as we will prove analytically91

in Section 3 below. In fact, we will show that this choice of sign insures that the92

matrices V of right singular vectors converge to the identity matrix and that this93

choice is required to obtain the optimal solution of (1.1).94
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Fig. 2. Comparison of Algorithm 1.2 from [9] with our new Algorithm 1.3 on the same full-rank
(left) and approximately low-rank (right) examples from Figure 1.

We will formalize Algorithm 1.3 mathematically since Algorithm 1.2 can then be95

obtained by simply redefining the choice of W . Based on Algorithm 1.3 we make the96

following recursive definitions,97

Bk+1 = X>UkWkDk(D2
k + λI)−1(1.3a)98

ŨkW̃kD̃
2
kW̃kṼ

>
k = Bk+1Dk(1.3b)99

Ak+1 = XŨkW̃kD̃k(D̃2
k + λI)−1(1.3c)100

Uk+1Wk+1D
2
k+1Wk+1V

>
k+1 = Ak+1D̃k(1.3d)101102

where (1.3b) and (1.3d) define all the quantities on the left hand side by computing103

the SVD of the right hand side. We initialize D̃−1 = D0 = W0 = I and choose U0 to104

be a random orthonormal n× r matrix and set A0 = U0W0D0.105
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The matrices Wk, W̃k are diagonal matrices where each diagonal entry is either 1106

or −1. These matrices define the choice of signs for the left and right singular vectors107

resulting from the SVD computation. In fact, due to random initializations of most108

SVD algorithms, the matrices Wk, W̃k are typically random and will be different each109

time the SVD algorithm is run. As we will see, this will be the cause of the erratic110

behavior of the cost function in Algorithm 1.2 as shown in Figure 2.111

A more concise iteration can be obtained by solving solving (1.3d) (at the previous112

step) for UkWkDk = AkD̃k−1VkWkD
−1
k and substituting into (1.3a) we have,113

Bk+1 = X>AkD̃k−1VkWkD
−1
k (D2

k + λI)−1.(1.4)114115

Similarly, solving (1.3b) for ŨkW̃kD̃k = Bk+1DkṼkW̃kD̃
−1
k and by substituting into116

(1.3c) we can write,117

Ak+1 = XBk+1DkṼkW̃kD̃
−1
k (D̃2

k + λI)−1.(1.5)118119

Here we can immediately see that the product Ak+1B
>
k+1 will not converge unless the120

signed right singular vectors ṼkW̃k,WkV
>
k of (1.3b),(1.3d) converge since,121

Ak+1B
>
k+1 = XBk+1DkṼkW̃kD̃

−1
k (D̃2

k + λI)−1(D2
k + λI)−1D−1k WkV

>
k D̃k−1A

>
k X.122

This explains the jumps of Algorithm 1.2 shown in Figure 2.123

1.2. Overview. In Section 2 we will show that, in an appropriate sense, we124

have Uk → U and Ũk → V . Then, in Section 3, we turn to the singular values125

and show that Dk, D̃k both converge to Ir×pDIp×r given by the softmax function126

D =
√

(S − λI)+. Finally, in Section 4 we will show that Vk, Ṽk converge to diagonal127

matrices determined by the choice of Wk, W̃k. We will see that any convergent choice128

for the diagonal sign matrices Wk, W̃k will yield a convergent algorithm. These results129

will culminate in Theorem 4.2 which reveals that, assuming W̃k → W̃∗ and Wk →W∗,130

we have the limiting matrices,131

Ak → A∗ = USD(D2 + λI)−1Ip×rW̃∗132

Bk → B∗ = V SD(D2 + λI)−1Ip×rW∗133134

for Algorithm 1.3. Moreover, the dependence of the first term of the cost function135

(1.1) on the sign matrices is given by,136

||X −A∗B>∗ ||F = ||S − S2D2(D2 + λI)−2Ip×rW̃∗W∗Ir×p||F(1.6)137138

and only the choice W̃∗W∗ = I will minimize the cost. When λ < Srr the above cost139

simplifies to,140

||X −A∗B>∗ ||F = ||S − (S − λ)+Ip×rW̃∗W∗Ir×p||F141

which is optimal when W̃∗W∗ = I. This explains the large cost values for Algo-142

rithm 1.2 shown in Figure 2 since the random Wk, W̃k essentially replace W̃∗,W∗143

with random sign matrices. Of course, occasionally these random sign matrices yield144

W̃kWk = I, which explains why the cost sometimes jumps down to the optimal cost.145

This also justifies our choice in Algorithm 1.3 where Wk, W̃k are chosen to insure146

that the sum of the columns of WkVk and W̃kṼk are positive. As Vk, Ṽk converge to147

diagonal matrices, this choice will guarantee that W̃∗W∗ = I, thereby obtaining the148

minimal cost solution.149
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6 M. PANAGODA, T. BERRY, AND H. ANTIL

2. Convergence of the Singular Vectors. The first part of proving the con-150

vergence of Algorithm 1.3 is showing that the sequences Uk and Ũk defined in (1.3b)151

and (1.3d) converge to the top r left and and right singular vectors of X respec-152

tively. In other words, if X = USV > is the SVD of X then loosely speaking we153

have Uk → U(1:r) and Vk → V(1:r) where the subscript (1 : r) indicates the first154

through r-th columns of the matrix. The reason we say ‘loosely speaking’ is due to155

the non-uniqueness of sign in the singular vectors, even for unique singular values156

(for repeated singular values we only have uniqueness up to orthogonal linear trans-157

formations). Thus, the first column of Uk could alternate between that of U and its158

negative and this would still be considered convergence since we would have obtained159

the correct subspace.160

We define convergence in terms of the norm of the matrix of inner products161

||U>k U(r+1:n)|| converging to 0 (any matrix norm can be used since this always implies162

U>k U(r+1:n) is zero). Since UkU
>
k = Ir×r, the columns of Uk span an r-dimensional163

subspace, so if U>k U(r+1:n) = 0 this subspace is orthogonal to the subspace spanned164

by the last n−r columns of U . Thus, ||U>k U(r+1:n)||max → 0 implies that the subspace165

spanned by the columns of Uk is aligning with the subspace spanned by the first r166

columns of U . As shown in Figure 3 we have ||U>k U(r+1:n)||max → 0 for both Algorithm167

1.2 and Algorithm 1.3.168

In this section we will prove that this convergence is independent of the choice169

of Wk, W̃k and show that the convergence rate is determined by the ratio of the170

(r + 1)-st and r-th squared singular values of X. In particular, when X is low-rank171

or approximately low-rank, this will imply the fast convergence observed in Figure 1.172

We first note that the iteration (1.3a)-(1.3d) is rank preserving in the generic case173

when X is full-rank.174
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Fig. 3. Comparison of the convergence of the singular vectors on the same full-rank (left) and
approximately low-rank (right) examples from Figure 1. Error is measured by ||U>k U(r+1:n)||max,
where U(r+1:n) is the matrix containing the (r + 1)-st through n-th columns of U . The theoretical

convergence rate
(

sr+1

sr

)2
shown is proven in Theorem 2.3 . Notice that the singular vectors converge

for both Algorithm 1.2 from [9] and our new Algorithm 1.3 .

Lemma 2.1. Let X ∈ Rn×m, have full rank, namely rank(X) = min{m,n}, then175

for all k the matrices Ak, Bk, Uk,Wk, Dk, Vk, Ũk, W̃k, D̃k, Ṽk defined by the iteration176

(1.3a)-(1.3d) are all full rank.177

Proof. The algorithm is initialized with A0 = U0W0D0, where U0 is a random178

matrix and thus generically full rank and D0 = W0 = I is full rank. By (1.3a)179

we have Bk+1 = X>Ak(D2
k + λI)−1 and since X and D2

k + λI are full rank, we180
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RANK-RESTRICTED SOFT SVD CONVERGENCE 7

have rank(Bk+1) = rank(Ak). This establishes the base case, and if we inductively181

assume Ak, Dk are full rank we immediately find that Bk+1 is full rank and thus182

Bk+1Dk is also full rank. Since the right-hand-side of (1.3b) is full rank, all the183

matrices Ũk, W̃k, D̃k, Ṽk on the left-hand-side of (1.3b) are full rank since they are184

defined to be the SVD of a full rank matrix. By (1.3c) we have Ak+1 written as a185

product of full rank matrices and thus Ak+1 is full rank. Finally, the right-hand-side186

of (1.3d) is now full rank which implies that all the matrices on the left-hand-side,187

Uk+1,Wk+1, Dk+1, Vk+1 are all full rank. This completes the induction.188

When X is not full rank, generically the random initial matrix U0 will not be189

orthogonal to the subspace spanned by the rows of X and since B1 = X>A0/(1 + λ)190

we find rank(B1) = min{rank(X), rank(A0)}. Note that since D0 = I we have (D2
0 +191

λI)−1 = I/(1 + λ). When rank(X) ≥ r we expect all of the matrices in Lemma 2.1192

to have rank r and when rank(X) < r they should all have rank equal to rank(X).193

However, showing that Uk does not evolve to become orthogonal to the span or the194

rows of X requires Theorem 2.3 below.195

The next step is to make a connection between the iteration (1.3a)-(1.3d) and196

the SVD of X. In the next lemma we show how the (1.3a) followed by (1.3c) is197

related to multiplication by XX> and similarly (1.3c) followed by (1.3a) is related to198

multiplication by X>X.199

Lemma 2.2. Let X ∈ Rn×m, and using the notation of (1.3a)-(1.3d) define200

Pk+1 ≡ D2
k+1V

>
k+1(D̃2

k + λI)W̃kṼ
>
k D

−2
k (D2

k + λI)Wk201

P̃k+1 ≡ D̃2
k+1Ṽ

>
k+1(D2

k+1 + λI)Wk+1V
>
k+1D̃

−2
k (D̃2

k + λI)W̃k202203

then204

XX>Uk = Uk+1Pk+1 (XX>)kU0 = UkPk · · ·P1205

X>XŨk = Ũk+1P̃k+1 (X>X)kŨ0 = ŨkP̃k · · · P̃1206207

and the products208

Qk ≡ D−2k Pk · · ·P1209

= V >k

(
k−1∏
i=1

(D̃2
i + λI)W̃iṼ

>
i (D2

i + λI)WiV
>
i

)
(D̃2

0 + λI)W̃0V
>
0 (1 + λ)210

Q̃k ≡ D̃−2k P̃k · · · P̃1 = Ṽ >k (D2
k + λI)WkQk211212

are invertible with inverses bounded by ||Q−1k || ≤ λ1−2k, and ||Q̃−1k || ≤ λ2−2k.213

Proof. We first solve (1.3a) for X>Uk = Bk+1(D2
k + λI)D−1k Wk to obtain,214

XX>Uk = XBk+1(D2
k + λI)D−1k Wk215

= Ak+1(D̃2
k + λI)D̃kW̃kṼ

>
k D

−1
k (D2

k + λI)D−1k Wk216

= Uk+1D
2
k+1V

>
k+1(D̃2

k + λI)W̃kṼ
>
k D

−2
k (D2

k + λI)Wk(2.1)217218

where the second equality follows from (1.5) and the last follows from (1.3d) af-219

ter rearranging the diagonal matrices. The definition of Pk then immediately yeilds220

XX>Uk = Uk+1Pk+1 and a similar computation shows XX>Ũk = Ũk+1P̃k+1.221
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8 M. PANAGODA, T. BERRY, AND H. ANTIL

The formulas for Qk and Q̃k follow by a simple induction using the formulas222

for Pk, P̃k. Note that Qk, Q̃k are products of diagonal matrices (with non-zero di-223

agonal entries), sign matrices and orthogonal matrices and thus are both invertible.224

Moreover, since λ > 0 we have the upper bound,225

||Q−1k || ≤

(
k−1∏
i=1

1

||D̃2
i + λI|| ||D2

i + λI||

)
1

||D̃2
0 + λI||(1 + λ)

≤ λ1−2k226

and ||Q̃−1k || ≤
||Q−1

k ||
||D2

k+λI||
≤ λ2−2k.227

In order to connect the iteration (1.3a)-(1.3d) to the singular vectors of X we will228

use the formulas,229

(XX>)kU0 = UkD
2
kQk, (X>X)kŨ0 = ŨkD̃

2
kQ̃k230

which follow from Lemma 2.2. Substituting the SVD of X = USV > results in,231

US2kU>U0 = UkD
2
kQk, V S2kV >Ũ0 = ŨkD̃

2
kQ̃k232

and using the invertibility of the Dk, D̃k, Qk, Q̃k matrices we have,233

U>Uk = S2kU>U0D
−2
k Q−1k , V >Ũk = S2kV >Ũ0D̃

−2
k Q̃−1k .(2.2)234235

Notice that we have again rearranged the diagonal matrices.236

The key to leveraging (2.2) for analyzing the convergence of Uk, Ũk is to split the237

true singular vectors, U , into two groups by choosing an arbitrary ` ∈ {1, ..., p − 1}238

where p = min{m,n}. We then split U = [U(1) U(2)] where U(1) contains the first `239

columns of U , and similarly V = [V(1) V(2)] and finally we split the diagonal matrix of240

singular values as S =

(
S1 0
0 S2

)
where S1 is `× ` and contains the first ` singular241

values.242

Theorem 2.3. Let X ∈ Rn×m have SVD X = USV > and set p = min{m,n}243

then, using the notation of Lemma 2.2, for any splitting of the singular vectors ` ∈244

{1, ..., p− 1} we have245

U>(1)Uk,` = S2k
1 U>(1)U0,`Zk,` U>(2)Uk,` = S2k

2 U>(2)U0,`Zk,`(2.3)246

V >(1)Ũk,` = S2k
1 V >(1)Ũ0,`Z̃k,` V >(2)Ũk,` = S2k

2 V >(2)Ũ0,`Z̃k,`(2.4)247
248

where Uk,`, Ũk,` are the first ` columns of Uk, Ũk respectively and Zk,`, Z̃k,` are the249

first ` rows of D−2k Q−1k , D̃−2k Q̃−1k respectively. Moreover, as k →∞, we have250

||U>(2)Uk,`||
||U>(1)Uk,`||

≤ c`
(
s`+1

s`

)2k

→ 0
||V >(2)Ũk,`||
||V >(1)Ũk,`||

≤ c̃`
(
s`+1

s`

)2k

→ 0.251

Proof. From (2.2) we have,252 (
U>(1)
U>(2)

)
Uk =

(
S2k
1 0
0 S2k

2

)(
U>(1)
U>(2)

)
U0D

−2
k Q−1k253
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which immediately splits into the equations (2.3) and a similar splitting occurs for V254

which yields (2.4). Next we solve the left equation of (2.3) for Zk,` and substitute255

into the right equation of (2.3) to find,256

U>(2)Uk,` = S2k
2 U>(2)U0,`(U

>
(1)U0,`)

−1S−2k1 U>(1)Uk,`257

and obtain the upper bound,258

||U>(2)Uk|| ≤ ||S
2k
2 || c` ||S−2k1 || ||U>(1)Uk|| =

(
s`+1

s`

)2k

||U>(1)Uk||259

where the constant c` is determined by the inner products with U0,` and is independent260

of k.261

The power of Theorem 2.3 is that the splitting ` was arbitrary. In the generic262

case of distinct singular values, ` = 1 immediately implies that the first column of263

Uk becomes orthogonal to the last p − 1 left singular vectors of X (columns of U)264

and hence must lie in the space spanned by the first left singular vector of X. Then,265

` = 2 implies that the second column of Uk must be orthogonal to the last p − 2266

left singular vectors. Moreover, the definition of Uk via the SVD in (1.3d) implies267

that the second column of Uk is orthogonal to the first column of Uk and hence must268

be in the subspace spanned by the second left singular vector of X. Inductively,269

this shows that the columns of Uk converge to lie in the subspaces spanned by the270

corresponding columns of U . In the generic case of distinct singular values, this means271

that the columns of Uk are converging to those of U up to sign. Moreover, in the272

non-generic case of a repeated singular value, Theorem 2.3 shows the convergence273

of the corresponding columns of Uk to the subspace spanned by the singular vectors274

corresponding to the repeated singular value. We can now turn to the convergence of275

the singular values.276

3. Convergence of the Singular Values. We can combine (1.3a) and (1.3b)277

into a single equation (and similarly for (1.3c) and (1.3d)),278

ŨkW̃kS̃kW̃kṼ
>
k = X>UkWkSk(Sk + λI)−1(3.1)279

Uk+1Wk+1Sk+1Wk+1V
>
k+1 = XŨkW̃kS̃k(S̃k + λI)−1(3.2)280281

where Sk = D2
k and S̃k = D̃2

k and the terms on the left-hand-side of (3.1) and (3.2) are282

defined to be the singular value decomposition of the right-hand-side. Substituting283

the singular value decomposition of X = USV > we have,284

ŨkW̃kS̃kW̃kṼ
>
k = V SU>UkWkSk(Sk + λI)−1(3.3)285

Uk+1Wk+1Sk+1Wk+1V
>
k+1 = USV >ŨkW̃kS̃k(S̃k + λI)−1.(3.4)286287

We first consider the simplified iteration where the singular vectors are set equal to288

their limits, namely, Uk = U(1:r) and Ũk = V(1:r). Since Uk → U(1:r) and Ũk → V(1:r)289

we will be able to use a perturbation argument to extend this simplified case to the290

true Uk, Ũk sequences. In the simplified iteration, U>Uk = V >Ũk = In×r where In×r291

is an r-by-r identity matrix concatenated with an (n− r)-by-r matrix of all zeros. In292

this case we obtain293

ŨkW̃kS̃kW̃kṼ
>
k = V In×rWkSSk(Sk + λI)−1(3.5)294

Uk+1Wk+1Sk+1Wk+1V
>
k+1 = UIn×rW̃kSS̃k(S̃k + λI)−1.(3.6)295296
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Note that the left-hand-sides of (3.5) and (3.6) are defined to be the unique SVD297

of the right-hand-sides. This implies that Ũk = V In×r and Uk+1 = UIn×r and298

Ṽ >k = V >k+1 = In×r which shows that this is a fixed point for the singular vectors.299

Moreover, we obtain the following iteration for the singular values,300

S̃k = SSk(Sk + λI)−1(3.7)301

Sk+1 = SS̃k(S̃k + λI)−1.(3.8)302303

Since these are all diagonal matrices, we can focus on the fixed point iteration for a304

single diagonal entry sk = (Sk)ii and s = Sii we find,305

(3.9) sk+1 = s2
sk

sk + λ

(
ssk

sk + λ
+ λ

)−1
=

s2sk
sk(s+ λ) + λ2

306

for any i ∈ {1, ..., r}.307

Lemma 3.1. For any s, λ, s0 ∈ R with s 6= λ the iteration (3.9) converges locally308

to the softmax function,309

sk → (s− λ)+ ≡ max{0, s− λ},310

which is the only stable fixed point.311

Proof. The fixed points of this iteration are the solutions ŝ of ŝ = s2ŝ
ŝ(s+λ)+λ2 which312

implies313

ŝ(ŝ(s+ λ) + λ2 − s2) = 0314

so the fixed points are ŝ = 0 and ŝ = s−λ. Next we analyze the stability of the fixed315

points by computing the derivative of the iteration,316

d

dsk

(
s2sk

sk(s+ λ) + λ2

)
=

(sk(s+ λ) + λ2)s2 − s2sk(s+ λ)

(sk(s+ λ) + λ2)2
317

and evaluating at the fixed point sk = ŝ = 0 we find318

d

dsk

(
s2sk

sk(s+ λ) + λ2

)∣∣∣∣
sk=0

=
s2

λ2
319

and at the fixed point sk = ŝ = s− λ we find320

d

dsk

(
s2sk

sk(s+ λ) + λ2

)∣∣∣∣
sk=s−λ

=
((s− λ)(s+ λ) + λ2)s2 − s2(s− λ)(s+ λ)

((s− λ)(s+ λ) + λ2)2
=
λ2

s2
.321

Thus we see that when s < λ the fixed point ŝ = 0 is stable and when s > λ the fixed322

points ŝ = s−λ is stable. In other words, when s−λ is positive the stable fixed point323

is s− λ and when s− λ is negative the stable fixed point is zero, thus we see that the324

iteration converges to the soft-max function,325

sk → max{0, s− λ}326

This completes the proof.327
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The case λ 6= s is generic, however, we note that for the case of s = λ we have the328

simplified iteration sk+1 = λsk
2sk+λ

and inductively we have, sk = λs0
(2k)s0+λ

so unless329

s0 = − λ
2k for some k ∈ N, we again have sk → 0 = max{0, s− λ}.330

Lemma 3.1 holds for any real s 6= λ and any initial condition s0 including negative331

numbers. Of course, in our current application, these are all constrained to be non-332

negative. When any of them are zero the iteration is trivial, so in the next lemma333

we consider the case when s, λ, s0 > 0 and show a stronger convergence property that334

will be required for the perturbation result.335

Lemma 3.2. For any s, λ, s0 ∈ (0,∞), with s 6= λ, there exists c ∈ [0, 1) such that336

|sk+1 − (s− λ)+| ≤ c|sk − (s− λ)+|337

and the iteration (3.9) converges globally on (0,∞) to the softmax function, sk →338

(s− λ)+.339

Proof. Note that s, λ, s0 > 0 implies sk ≥ 0 for all k by a simple induction.340

First consider the case when λ > s so that (s− λ)+ = 0. Setting c1 = s2

λ2 < 1 we341

have342

|sk+1 − (s− λ)+| = s2sk
sk(s+ λ) + λ2

<
s2

λ2
sk = c1|sk − (s− λ)+|.343

Next consider the case where λ < s so that (s− λ)+ = (s− λ) and344

(sk+1 − (s− λ)) =
s2sk − sk(s2 − λ2)− λ2(s− λ)

sk(s+ λ) + λ2
=

λ2

sk(s+ λ) + λ2
(sk − (s− λ)).

(3.10)

345
346

Since λ2

sk(s+λ)+λ2 ≤ 1, (3.10) implies |sk+1 − (s− λ)| ≤ |sk − (s− λ)| and inductively347

|sk+1 − (s− λ)| ≤ |s0 − (s− λ)|348

which means that the sequence can never move further away from s − λ. Moreover,349

the sequence can never move to the other side of s− λ, namely, since λ2

sk(s+λ)+λ2 > 0,350

if s0 ≥ s− λ then (3.10) implies that s0 ≥ sk ≥ s− λ for all k, and if s0 < s− λ then351

s0 ≤ sk < s− λ for all k.352

Now if s0 < s− λ then we have sk ≥ s0 for all k and setting c2 = λ2

s0(s+λ)+λ2 < 1,353

(3.10) implies,354

|sk+1 − (s− λ)+| = λ2|sk − (s− λ)|
sk(s+ λ) + λ2

≤ λ2|sk − (s− λ)|
s0(s+ λ) + λ2

= c2|sk − (s− λ)+|.355

On the other hand, if s0 ≥ s − λ then we have s0 ≥ sk ≥ s − λ for all k, and356

setting c3 = λ2

s2 < 1, (3.10) implies357

|sk+1 − (s− λ)+| = λ2|sk − (s− λ)|
sk(s+ λ) + λ2

≤ λ2|sk − (s− λ)|
(s− λ)(s+ λ) + λ2

= c3|sk − (s− λ)+|.358

So in each case we have |sk+1 − (s− λ)+| ≤ c|sk − (s− λ)+| for some c ∈ [0, 1).359

The above lemma establishes a linear convergence rate which is crucial when we con-360

sider the perturbed iteration below which will be critical to establishing convergence361

of the full iteration (3.3) and (3.4). We first establish a general perturbation results362

for convergent sequences.363
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Lemma 3.3. Consider an iteration xk+1 = f(xk) with a fixed point x∗ such that364

for some c ∈ [0, 1) we have365

|f(x)− x∗| < c|x− x∗|366

for all x. Consider a sequence of perturbations ek such that for some a ∈ [0, 1) we367

have |ek+1| < a|ek| then the perturbed sequence wk+1 = f(wk) + ek converges to x∗368

for any w0.369

Proof. First, since x∗ = f(x∗) we have,370

|wk+1 − x∗| = |f(wk) + ek − x∗| ≤ |f(wk)− f(x∗)|+ |ek| < c|wk − x∗|+ |ek|371372

and a simple induction shows that |wk+1 − x∗| <
∑k
i=0 c

i|ek−i|. Since |ek+1| < a|ek|373

for all k, we have |ek−i| < ak−i|e0| and thus,374

|wk+1 − x∗| <
k∑
i=0

ci|ek−i| < |wk+1 − x∗| < |e0|
k∑
i=0

ciak−i = |e0|
ak+1 − ck+1

a− c
→ 0375

since c, a,∈ [0, 1), so wk → x∗.376

Note that when applying Lemma 3.3 to the sequence sk of singular values, the required377

inequality on f holds only on (0,∞), however the sequence of perturbations cannot378

cause the sequence to leave this set since the perturbed sequence is also a sequence379

of singular values.380

3.1. Perturbation of Singular Values. We can now show that as Uk → U ,381

the singular values of (3.3) and (3.4) are a perturbation of the iteration in Lemma382

3.1. This perturbed sequence will satisfy the assumptions of Lemma 3.3 and thus will383

still converge to the softmax, (s− λ)+.384

Returning to (3.3), when Uk 6= U by Theorem 2.3 we can write Uk = U + Ek385

where the perturbations Ek decay linearly to zero, ||Ek+1|| < a||Ek|| → 0 for some386

a ∈ [0, 1). We can write (3.3) as387

UkW̃kS̃kW̃kṼ
>
k = V SU>UkWkSk(Sk + λI)−1388

= V SU>(U + Ek)WkSk(Sk + λI)−1389

= V SU>UWkSk(Sk + λI)−1 + V SU>EkWkSk(Sk + λI)−1390391

The first term above will be same as right-hand-side of (3.5) and will simplify to give392

the right-hand-side of (3.7). The second term has bound393

||V SU>EkWkSk(Sk + λI)−1|| ≤ ||S|| ||Ek|| ||Sk(Sk + λI)−1|| < ||S|| ||Ek||394

since V,U>,Wk are orthogonal and Sk(Sk + λI)−1 is diagonal with diagonal entries395

less than 1. By Weyl’s law for the stability of singular values under perturbation (see396

for example Theorem 1 of [13]) the singular values s̃k on the left-hand-side of (3.5) are397

given by a perturbation ek of the right-hand-side (3.7) bounded by ||S||||Ek||. The398

iteration for the true singular values becomes,399

s̃k = ssk(sk + λ)−1 + ek(3.11)400

sk+1 = ss̃k(s̃k + λ)−1 + ẽk.(3.12)401402
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where |ek| < ||S|| ||Ek|| and by a similar we find a perturbation argument we have403

|ẽk| < ||S|| ||Ẽk||. Finally, the iteration (3.9) becomes,404

sk+1 =
s2sk(sk + λ)−1 + ek

ssk(sk + λ)−1 + ek + λ
+ ẽk =

s2sk + ek(sk + λ)

sk(s+ λ) + λ2 + ek(sk + λ)
+ ẽk405

=
s2sk

sk(s+ λ) + λ2
+ êk(3.13)406

407

where408

(3.14) êk = ek
(sk + λ)(sk(s+ λ− s2) + λ2)

(sk(s+ λ) + λ2)(sk(s+ λ) + λ2 + ek(sk + λ))
+ ẽk409

Noting that sk(s+ λ− s2) + λ2 ≤ sk(s+ λ) + λ2, we can estimate êk as,410

|êk| ≤ |ek|
∣∣∣∣ sk + λ

sk(s+ λ) + λ2 + ek(sk + λ)

∣∣∣∣+ |ẽk|411

Since ek → 0, for k sufficiently large we have −λ < ek < λ. We can bound the above412

denominator by, sk(s+λ) +λ2 + ek(sk +λ) > sk(s+λ) +λ2−λ(sk +λ) = sks. Then,413

|êk| ≤ |ek|
∣∣∣∣sk + λ

sks

∣∣∣∣+ |ẽk| ≤ c|ek|+ |ẽk|414

since sk is bounded. Since ek and ẽk have linear convergence, this implies that êk415

has linear convergence as well. Thus, by Lemma 3.3 the true singular values, sk, s̃k416

converge to the same limit as the unperturbed singular values, namely the soft max,417

(s− λ)+.418

4. Effect of sign matrices on the cost functional. We can now show that419

the matrices of right singular vectors Vk, Ṽk from the SVDs in (1.3b) and (1.3d),420

converge to diagonal sign matrices when λ < Srr.421

Theorem 4.1. Let X ∈ Rn×m have SVD X = USV >. For λ > 0 let Vk, Ṽk be422

the sequence of matrices defined by (1.3b) and (1.3d), then423

||Ṽk − Ir×p((S − λI)+ + λI)S−1Ip×rWk||max → 0424

and when Wk converges to a limit W∗ then Ṽk → Ir×p((S − λI)+ + λI)S−1Ip×rW∗.425

When λ < Srr we have ||Ṽk −Wk||max → 0 and when Wk →W∗ we have Vk →W∗.426

Proof. Substituting (1.3a) in (1.3b) we have,427

ŨkW̃kD̃
2
kW̃kṼ

>
k = X>UkWkDk(D2

k + λI)−1Dk428

where X>Uk is n× r with r ≤ p ≡ min{m,n}. In order to solve for Ṽ >k we multiply429

both sides by U>k X since U>k XX
>Uk = U>k US

2U>Uk is invertible so that,430

U>k XŨkW̃kD̃
2
kW̃k = U>k US

2U>UkWkDk(D2
k + λI)−1DkṼk431

and solving for Ṽk yields,432

Ṽk = D−2k (D2
k + λI)Wk(U>k US

2U>Uk)−1U>k USV
>ŨkD̃

2
k.433

By Theorem 2.3 we have U>k U → Ir×p and V >Ũk → Ip×r as k →∞ and as shown in434

Section 3 we have Dk → Ir×pDIp×r = Ir×p(S−λI)+Ip×r and also D̃k → Ir×pDIp×r.435

Substituting these limits into the above equation gives the desired result. Notice that436

when λ < Srr the maximum with zero has no effect and thus ((S−λI)++λI)S−1 = I437

so that ||Ṽk −Wk||max → 0.438
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A similar argument shows that when λ < Srr we have ||Vk − W̃k||max → 0 so that439

both Vk, Ṽk are converging to diagonal sign matrices. We can now characterize the440

convergence of Algorithm 1.3.441

Theorem 4.2. Let X ∈ Rn×m have SVD X = USV >. For λ > 0, the iteration442

(1.3a)-(1.3d) converges whenever the sign matrices Wk, W̃k are chosen so that they443

converge to limits Wk → W∗ and W̃k → W̃∗. The cost (1.1) of the limiting matrices444

A∗, B∗ of the iteration is445

||X −A∗B>∗ ||F = ||S − (S − λI)+S2((S − λI)+ + λI)−2Ip×rW̃∗W∗Ir×p||F446

and when λ < Srr it is447

||X −A∗B>∗ ||F = ||S − (S − λI)+Ip×rW̃∗W∗Ir×p||F448

and only W̃∗W∗ = I will minimize the cost.449

Proof. If we make a convergent choice for the sign matrices Wk →W∗ and W̃k →450

W̃∗ equation (1.3a) defines a steady state,451

B∗ = X>U∗W∗D∗(D
2
∗ + λI)−1 = V SD(D2 + λI)−1Ip×rW∗452

where D∗ = Ir×pDIp×r as shown in Section 3. Similarly (1.3c) defines a steady state,453

A∗ = XŨ∗W̃∗D∗(D
2
∗ + λI)−1 = USD(D2 + λI)−1Ip×rW̃∗.454

Thus we find the low rank approximation of X to be given by,455

A∗B
>
∗ = US2D2(D2 + λI)−2Ip×rW̃∗W∗Ir×pV

>
456

and when λ < Srr this reduces to457

A∗B
>
∗ = U(S − λI)+Ip×rW̃∗W∗Ir×pV

>.458

Notice that when W̃∗W∗ = I this is the optimal solution of (1.1) and (1.2). In the459

general case, we find the first part of the cost functional is given by,460

||X −A∗B>∗ ||F = ||USV > − U(S − λI)+Ip×rW̃∗W∗Ir×pV
>||F461

= ||S − S2D2(D2 + λI)−2Ip×rW̃∗W∗Ir×p||F462463

and when λ < Srr we have,464

||X −A∗B>∗ ||F = ||S − (S − λ)+Ip×rW̃∗W∗Ir×p||F .465

Since W̃∗ and W∗ are diagonal sign matrices, so is W̃∗W∗ and any negative entries466

would change the subtraction to addition in the above cost functional, so the solution467

A∗B
>
∗ is optimal only when W̃∗W∗ = I.468

Finally, since W̃∗ and W∗ are both sign matrices, the way to insure W̃∗W∗ = I is to469

choose W∗ = W̃∗. In other words, we need to ensure that the choice of sign matrices470

in (1.3b) and (1.3d) are the same. Algorithm 1.3 does this by choosing the diagonal471

entries of W̃k to be the signs of the sums of the columns of Ṽk and similarly for Wk in472

terms of Vk. Since Theorem 4.1 show that Ṽk, Vk are converging to diagonal matrices473

(independent of the choice of W̃k,Wk) these choices of W̃k,Wk will insure that both474

W̃kṼ
>
k and WkVk converge to the identity matrix. In fact, it does not matter which475

unique sign choice is made in the SVDs in (1.3b) and (1.3d) as long as the same476

choice is made for both SVDs. Effectively, the choice of sign matrices is how the477

right singular vectors of (1.3b) and (1.3d) contribute to the iteration in Algorithm478

1.3, whereas they are not used at all in Algorithm 1.2.479
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5. Conclusions and Future Work. In this paper we introduced Algorithm480

1.3 as a new rank-restricted soft SVD method and we have proven convergence to the481

optimal solution of (1.1). We have shown that the standard method, Algorithm 1.2,482

can fail to converge or can converge to a non-optimal stationary point. Moreover, we483

have derived the convergence rate of Algorithm 1.3 based on the singular values of the484

matrixX which shows how Algorithm 1.3 can obtain much faster convergence than the485

naive alternating directions approach of Algorithm 1. Since Algorithm 1.3 is only one486

component of the matrix completion method introduced in [9], an important future487

direction is analyzing the entire matrix completion algorithm. Moreover, the choice488

of the rank restriction, r, and regularization parameter λ are critical for obtaining489

the best matrix completion. Investigating methods of selecting these parameters,490

possibly based on cross-validation, is another critical direction for future research.491

Finally, while Algorithm 1.3 is of significant interest due to its use in matrix completion492

problems [9, 11, 4, 5], it could also be used as a partial SVD algorithm and comparison493

to state-of-the-art SVD methods [6, 7, 10] could yield future insights or improvements.494

REFERENCES495

[1] H. Antil, D. Chen, and S. Field, A note on qr-based model reduction: Algorithm, software,496
and gravitational wave applications, Computing in Science & Engineering, 20 (2018).497

[2] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learning via the498
alternating direction method of multipliers, Now Publishers Inc, 2011.499

[3] R. Bro, E. Acar, and T. G. Kolda, Resolving the sign ambiguity in the singular value de-500
composition, Journal of Chemometrics: A Journal of the Chemometrics Society, 22 (2008),501
pp. 135–140.502

[4] J.-F. Cai, E. J. Candès, and Z. Shen, A singular value thresholding algorithm for matrix503
completion, SIAM Journal on optimization, 20 (2010), pp. 1956–1982.504

[5] E. J. Candes and Y. Plan, Matrix completion with noise, Proceedings of the IEEE, 98 (2010),505
pp. 925–936.506
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