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ABSTRACT

The best strategy for three discrete time games is shown to be equivalent to a stopping

time. These stopping times are found and uniqueness is considered. The games

considered have sequences of random rewards which the player observes one at a

time. In the first game the player must pay for each observation but can quit and

take the highest reward he has seen at any time. In the second game the player can

only take the last reward seen and there are only finitely many rewards to view. In

the final game the player can only pick one reward but he wins only if he has chosen

the highest reward of all the draws (so he must beat all the draws that come after

his choice).
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CHAPTER 1

OPTIMAL STOPPING

Imagine a game or process in which we seek hidden rewards Xi with known distri-

bution. We may only have one reward and the rewards are uncovered one at a time

in order but we have to pay a price ci to see the ith reward. In the first version of

the game we may quit at any time and we may take the highest reward we have seen

so far. We shall call this game the Simple Hat Game With Memory. Formally, we

define the return upon quitting at time n as:

Yn := max
1≤m≤n

{Xm} −
n∑

i=1

ci

We want to find the best strategy for this game in the sense of having the highest

expected return at the lowest risk. Note that at each stage of the game we only need

to decide whether to quit or continue playing, and we can only quit once. Thus a

strategy for this game is a function which assigns to each sequence of events X1, X2, ...

a quitting time. Furthermore, since we cannot see the future, a decision to quit at

time n can only depend upon X1, ..., Xn and c1, ..., cn. Thus a strategy is equivalent

to a stopping time, so among all stopping times τ we must find that which maximizes

E[Yτ ] and if this stopping time is not unique we should also try to minimize var[Yτ ].
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We first determine the maximum expected return of any stopping strategy τ ; mean-

ing we find an upper bound for E[Yτ ]. In what follows we assume {Xi} are indepen-

dent, identically distributed (i.i.d.) random variables, with E[Xi] < ∞, which are

also independent from {ci} which are also i.i.d. random variables. First note that

(Xm − α)+ + α = max{Xm, α} ≥ Xm which gives us the following upper bound on

Yn:

Yn ≤ max
1≤m≤n

{(Xm − α)+}+ α−
n∑

i=1

ci ≤ α +
n∑

m=1

[(Xm − α)+ − cm]

From the above assumptions it is clear that Zm := (Xm −α)+− cm are i.i.d. random

variables, and thus (setting Sn :=
∑n

m=1 Zm) for any stopping time τ we have E[Sτ ] =

E[Z1]E[τ ] which gives the following bound:

E[Yτ ] ≤ α + E[Sτ ] = α + E[Z1]E[τ ]

This leads us to the following result:

Lemma 1.0.1. If there is an α such that E[(X1 − α)+] = E[c1] then E[Yτ ] ≤ α for

any strategy τ such that E[τ ] < ∞.

Proof. Since α was chosen such that E[Z1] = 0 the result follows from the above

bound.

This is clearly unsatisfying if there is no such α, so before going on we should establish

the following lemma:

Lemma 1.0.2. If 0 < E[c1] ≤ E[X1] then there exists and α such that E[(X1−α)+] =

E[c1].
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Proof. Let f(α) = E[(X1 − α)+]. Note that f(α) ≤ ε for α large enough, and

f(0) = E[X1] and furthermore f is a continuous function of α and hence for any

c ∈ (0, E[X1]) there is a solution to f(α) = c.

The following theorem establishes a surprisingly simple strategy that is optimal in the

sense of expected returns; we simply quit as soon as we observe an Xi that exceeds

α from the above lemma.

Theorem 1.0.3. Let α be as defined by Lemma 0.1 and assume that P (X1 > α) 6= 0.

Set T := inf{n : Xn > α}, then E[YT ] = α and thus T achieves the maximum expected

return established above.

Proof. The proof is simply a computation of E[YT ]. Note that since T is the first

time that Xi > α we have

max
1≤i≤T

{Xi} = XT

Thus, setting Cn :=
∑n

i=1 ci, we can compute:

E[YT ] = E[XT − CT ] = E[XT ]− E[CT ] = E[XT ]− E[c1]E[T ]

Let p = P (X > α) and q = 1− p = P (X ≤ α). We can now compute:

E[XT ] =
∞∑

n=1

E[XT 1T=n] =
∞∑

n=1

E[Xn; Xn > α,∀(i < n)(Xi ≤ α)]

=
∞∑
i=1

E[Xn; Xn > α]qn−1 =
1

p
E[X1; X1 > α]

and

E[T ] =
∞∑

n=1

nP (Xn > α,∀(i < n)(Xi ≤ α)) = p

∞∑
n=1

nqn−1 =
1

p
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Thus combining these computations we may now use the choice of α such that E[c1] =

E[(X1 − α)+] which lets us compute:

E[YT ] =
1

p
(E[X1; X1 > α]− E[c1]) =

1

p
(E[X1; X1 > α]− E[(X1 − α)+])

=
1

p
(E[X1; X1 > α]− E[X1 − α; X1 > α]) =

1

p
E[α; X1 > α] = α

Thus the simple stopping time T achieves the maximal expected return E[YT ] =

α.

At this point the α parameter is becoming somewhat mysterious, since it is defined

by the equation E[(X1−α)+] = c which can be very difficult to solve. Thus I provide

a simple example to ground the discussion which follows and which will help establish

non-uniqueness of the optimal solution.

Example 1: Suppose that for $1 we may draw from a hat containing papers la-

beled $1,$2,...,$10 each equally probable. After being drawn the number is recorded

and replaced and we may either take the dollar amount listed or pay another $1 to

draw again. We may then continue to draw as many times as we like, paying $1

per draw, and when we quit we are paid the highest dollar amount that was drawn.

In this example, the cost is c = 1 and the rewards Xi ∈ {1, 2, ..., 10} are uniformly

distributed, thus to find the optimal stopping time from Theorem 0.3 we must solve

the following equation for α:

1 = E[(X1 − α)+] =
1

10

10∑
X1=1

(X1 − α)+
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Since we know that the solution is unique, we may assume α is integer valued and our

computation will validate this fact in the end. This allows us to simplify the above

expression as:

=
1

10

10∑
X1=α

(X1−α) =
1

10

10∑
X1=α

X1−
α

10
(10−α+1) =

1

10

(
10 ∗ 11

2
− (α− 1)α

2

)
−11α

10
+

α2

10

Setting this expression equal to c = 1 and simplifying the quadratic we have:

0 = α2 − 21α + 90 = (α− 6)(α− 15)

Thus α = 6 is the unique solution which validates our assumption that α should be

integer valued. This implies that the optimal strategy is to wait until we see a value

that is strictly greater than $6 and then quit. Theorem 0.3 tells us that the expected

return for this strategy is α =$6 and that no other strategy has a higher expected

return. However Theorem 0.3 does not assert uniqueness of the optimal strategy and

thus other strategies may have the same optimal expected return of $6. In fact other

such strategies exist although they are not very different, we will show later that

there is a unique optimal strategy with minimal variance (risk), but first:

Theorem 1.0.4. The optimal stopping time of Theorem 0.3 is not unique.

Proof. Consider the stopping time T ∗ defined by:

T ∗ =

 1 X1 = 6

inf{n : Xn > 6} else

This is a valid stopping time because {T ∗ = 1} is measurable with respect to X1

and otherwise T ∗ returns the normally optimal stopping time. To see that T ∗ is an
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optimal stopping time, we will need E[Y1; X1 > 6] which we can compute by applying

the result from Theorem 1 which says E[YT ] = 6 and thus:

6 = E[YT ] =
∞∑

n=1

E[Yn; Xn > 6]P (X1 ≤ 6)n−1 = E[Y1; X1 > 6]
10

4

Where in the last equality we used the fact that P (X1 ≤ 6) = 6/10. This calculation

shows that E[Yn; Xn > 6] = 12/5. Now we can compute E[YT ∗ ]:

E[YT ∗ ] = E[Y1; T
∗ = 1] +

∞∑
n=2

E[Yn; Xn > 6]P (X1 ≤ 5)P (X2 ≤ 6) · · ·P (Xn−1 ≤ 6)

= E[Y1; X1 > 5] +
5

10
E[Y1; X1 > 6]

10

4
= 3 +

5

4

12

5
= 6

Thus T ∗ is an optimal stopping time.

Intuitively this new strategy should have a lower variance since it ‘stops sooner’ than

our simple strategy. We will now formalize the connection between variance of a

strategy and the expected stopping time, which will require Wald’s second equation:

Theorem 1.0.5 (Wald’s Second Equation). Let {Xi} be i.i.d. with E[Xi] = 0 and

E[X2
i ] < ∞. If T is a stopping time with E[T ] < ∞ then E[S2

T ] = E[X2
i ]E[T ].

Proof. We will compute E[S2
T∧n] inductively, thus first note that when T < n we have

T ∧ n = T = T ∧ (n− 1), thus we have:

E[S2
T∧n] = E

[
n∑

i,j=1

XiXj

]
= E

[
S2

T∧(n−1) + 1{T≥n}

(
2Xn

n−1∑
i=1

Xi + X2
n

)]
Thus we can compute the difference between successive cutoff times, noticing that

the event {T ≥ n} = {T < n}c ∈ σ(X1, ..., Xn−1) and hence is independent of Xn.

E[S2
T∧n]− E[S2

T∧(n−1)] = E[1{T≥n}2XnSn−1] + E[1{T≥n}X
2
n] = P (T ≥ n)E[X2

n]
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Where there first term in the second expression is zero since Xn is independent of Sn−1

and {T ≥ n} and E[Xn] = 0. Now that we know the difference between successive

cutoffs, we can compute E[S2
T∧n] as a telescoping sum:

E[S2
T∧n]− E[S2

T∧1] =
n∑

i=2

(E[S2
T∧i]− E[S2

T∧(i−1)]) =
n∑

i=2

E[X2
1 ]P (T ≥ i)

Note that E[S2
T∧1] = E[S2

1 ] = E[X2
1 ] = E[X2

1 ]P (T ≥ 1), so adding this term to both

sides of the previous equality we have:

E[S2
T∧n] = E[X2

1 ]
n∑

i=1

P (T ≥ i) → E[X2
1 ]E[T ]

Were we know that the right hand side converges to E[X2
1 ]E[T ] as n → ∞ since

E[T ] =
∑∞

i=1 P (T ≥ i) < ∞ by assumption. Intuitively, as n →∞ the left hand side

should converge to E[S2
T∧n] → E[S2

T ], however we need to know that this expression

does in fact converge before we can claim this. Note that we cannot use dominated

convergence since E[S2
n] is unbounded and boundedness of E[S2

T ] is what we are

trying to establish; thus we will show that ST∧n is a Cauchy sequence in L2. Let

n ≥ m ≥ M , we need to bound:

E[(ST∧n−ST∧m)2] = E[1{T≥n}(Sn−Sm)2 +1{m<T<n}(ST −Sm)2 +1{T≤m}(ST −ST )2]

=
∞∑

i=n+1

E[1{T=i}(Sn − Sm)2] +
n∑

i=m+1

E[1{T=i}(Si − Sm)2]

Where the last term, with T ≤ m, is clearly zero. Note that (Si−Sm)2 =
∑i

k,j=m+1 XkXj

and since 1{T=i} ≤ 1 and E[XkXj] = 0 when k 6= j we eliminate all these terms, leav-

ing:

≤
∞∑

i=n+1

E

[
1{T=i}

n∑
j=m+1

X2
j

]
+

n∑
i=m+1

E

[
1{T=i}

i∑
j=m+1

X2
j

]
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≤
∞∑

i=m+1

E

[
1{T=i}

n∑
j=m+1

X2
j

]
Thus switching the order of summation (since the terms are all positive) we have:

=
∞∑

j=m+1

E

[
X2

j

∞∑
i=j

1{T=i}

]

=
∞∑

j=m+1

E[X2
j 1{T≥j}] = E[X2

1 ]
∞∑

j=m+1

P (T ≥ j) →M→∞ 0

Where the limit is zero since E[T ] < ∞. So we conclude ST∧n is Cauchy in L2 and

hence E[S2
T∧n] → E[S2

T ] as n → ∞ and so finally we may conclude that E[S2
T ] =

E[X2
1 ]E[T ].

Thus, Wald’s Second Equation tells us that the variance of a stopped sum is pro-

portional to the expected stopping time, this will let us choose the minimal variance

strategy among all optimal strategies but first we must characterize all strategies

which are optimal in the sense of expected return:

Theorem 1.0.6. Let T with E[T ] < ∞ be an optimal stopping time in the sense that

E[YT ] = α. Then with probability 1, inf{n : Xn ≥ α} ≤ T ≤ inf{n : Xn > α}.

Note: this means that an optimal strategy can stop anytime after observing an Xn =

α or continue, but an optimal strategy must stop if Xn > α.

Proof. Since T is optimal, α = E[YT ] = E[max1≤i≤T{Xi}]−E[c1]E[T ]. We solve this

expression for E[T ] and then use the upper bound max1≤i≤T{Xi} ≤ α+
∑T

i=1(Xi−α)+

E[T ] =
E[max1≤i≤T{Xi}]− α

E[c1]
≤

E
[
α +

∑T
i=1(Xi − α)+

]
− α

E[c1]
=

E
[∑T

i=1(Xi − α)+
]

E[c1]
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=
E[T ]E[(X1 − α)+]

E[c1]
= E[T ]

Where in the last equality we used that α was chosen so that E[(X1 − α)+] = E[c1].

Note that since the first and last quantities are in fact equal, this implies that the

inequality is in fact equality, and thus:

E

[
max
1≤i≤T

{Xi}
]

= E

[
α +

T∑
i=1

(Xi − α)+

]
thus, since the expected value of the difference is zero and since we know the right

hand side is always greater than or equal to the left hand side we can conclude that:

P

(
max
1≤i≤T

{Xi} = α +
T∑

i=1

(Xi − α)+

)
= 1

Thus with probability 1 there can be only one i ∈ 0, ..., T such that Xi > α. This

implies that T < inf{n : Xn > α} with probability 1. Furthermore, with probability

one, at least one i ∈ 0, ..., T must have Xi ≥ α, which implies T ≥ inf{n : Xn ≥ α}

with probability one.

This theorem has told us what all the optimal strategies look like, and, since strategy

variance is proportional to expected stopping time, we have the following corollary:

Corollary 1.0.7 (Uniqueness of Minimal Variance Strategy). The stopping time

T = inf{n : Xn ≥ α} is the unique optimal strategy (E[YT ] = α) which minimizes

var[YT ].

Proof. Since any stopping time τ with E[Yτ ] = α has τ ≥ T , if τ 6= T then E[τ ] >

E[T ] (since every sequence has positive probability) and therefore, by Wald’s Second

Equation, var[Xτ ] > var[XT ].
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We now turn to choosing random variables with rejection, meaning we no longer have

access to the maximum value; once we make an observation the previous value is per-

manently rejected. We first introduce the optimal stopping time for two independent

choices.

Lemma 1.0.8. Let X1, X2 be independent random variables with E[X1], E[X2] <

∞ then the optimal stopping time for maximizing the expected value of the stopped

random variable is given by T = 1 ⇔ X1 ≥ E[X2], in the sense that for any stopping

time τ we have E[Xτ ] ≤ E[XT ].

Proof. Let τ be a stopping time. The key point is that, since X1 and X2 are indepen-

dent, and since {τ = 1} if measurable with respect to σ(X1), we have X2 and 1{τ 6=1}

are independent, thus:

E[Xτ ] = E[X11{τ=1}] + E[X21{τ 6=1}] = E[X11{τ=1}] + E[X2]− E[X2]E[1{τ=1}]

= E[X2] +

∫
{τ=1}

(x− E[X2])dPX1(x)

Since we can choose τ to maximize this sum, we want to choose τ = 1 if an only if

the integrand is non-negative. Thus τ = 1 if and only if X1 ≥ E[X2] so τ = T is the

optimal stopping time.

Now we can compute the return E[XT ] of the optimal strategy:

E[XT ] = E[X2] +

∫
x≥E[X2]

(x− E[X2])dPX1(x) = E[X2] + E[(X1 − E[X2])
+]

and the expected stopping time for the optimal strategy E[T ]:

E[T ] = 1 ∗ P (X1 ≥ E[X2]) + 2 ∗ (1− P (X1 ≥ E[X2]) = 2− P (X1 > E[X2])

10



We can now generate the optimal strategy for n independent random variables in-

ductively:

Theorem 1.0.9. Let X1, ..., Xn be independent random variables with finite expected

value. Define inductively constants α1, ..., αn by:

αn := E[Xn]

αn−1 := E[Xn] + E[(Xn−1 − E[Xn])+]

αn−2 := αn−1 + E[(Xn−2 − αn−1)
+]

...

αn−j := αn−j+1 + E[(Xn−j − αn−j+1)
+]

Then the optimal stopping time is given by:

T = inf{i : Xi ≥ αi}

Proof. The proof is by induction on n, the case n = 2 is done by the previous Lemma.

Assume the result is true for n = k, and let X1, ..., Xk+1 be independent, α2, ..., αk+1

be the k constants that define the optimal stopping time for the sequence Y1, ..., Yk

where Yi = Xi+1. Then, by the inductive hypothesis, for any stopping time τ we

have:

E[Xτ ] = E[X11{τ=1}] + E[Xτ1{τ>1}] = E[X11{τ=1}] + E[Y(τ−2)++1]P (τ > 1)

Where (τ − 2)+ + 1 = τ − 1 for τ > 1 and equals 1 for τ = 1, so this is a stopping

time for Y and hence

E[Xτ ] ≤ E[X11{τ=1}] + (α2 + E[(X2 − α2)
+]) ∗ (1− P (τ = 1))

11



So we set α1 := α2 + E[(X2 − α2)
+] as in the theorem, then we have:

E[Xτ ] ≤ α1 +

∫
{τ=1}

(x− α1)dPX1(x)

And as in the Lemma, this expectation is maximized when τ = 1 ⇔ X1 ≥ α1,

otherwise by the inductive hypothesis we have τ = inf{i > 1 : Xi ≥ αi} and these

two facts together confirm that the optimal strategy for X1, ..., Xk+1 is given by

inf{i : Xi ≥ αi} completing the induction.

Before moving on let us ground the discussion in another example similar to the first

one but which implements the previous theorem:

Example 2: As in the first example we will take a hat with 10 slips of paper labeled

with dollar amounts $1,...,$10 each of which is equally likely to be drawn and then

replaced. Assume we will make n draws, then Xi is the uniform distribution on the

set {1, ..., 10} and so E[Xi] = 5.5 and thus we have αn = 5.5. Thus we can compute

αn−1 = 5.5 + E[(Xn−1 − 5.5)+] = 5.5 + 1
10

∑10
i=6(i− 5.5) = 6.75. Thus we will need a

formula:

αn−j−1 = αn−j +
1

10

∑
αn−j<i≤10

(i− αn−j)

=
11

2
− bαn−jc(bαn−jc+ 1)

20
+
bαn−jcαn−j

10

Notice that for αn−j < 10 we have αn−j−1 < 11
2
− 9

2
+ 9

αn−j

10
< 10. Further-

more, if fix n = 10 a short computer program yields the following ceiling values for

(dα1e, ..., dα10e) = (10, 9, 9, 9, 9, 9, 8, 8, 7, 6), thus we should stop at the first variable if

X1 ≥ 10 and at the second if X2 ≥ 9 and so forth. Finally one may also compute the
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approximate value of α1
∼= 9.087 which tells us the the expected return of this strategy

is E[XT ] = α1+E[(X1−α1)
+] ∼= 9.087+ 1

10
(10−9.087) ∼= 9.18. Recall that in the pre-

vious example the expected value of the chosen slip was E[XT ] = 6+E[(X1−6)+] = 7

so in this new game we are able to achieve a much higher expected number on the

slip since there is no cost for playing repeatedly.

So far we have been searching for strategies that maximize the expected value of

the stopped sequence, but sometimes the goals are different. For example assume

that instead of receiving the last value drawn (as in the previous theorem) the chosen

value is recorded and then the game is continued to complete a total of n draws, when

the game ends if the value recorded is the highest value seen we win, otherwise we

lose. This new game is all or nothing, so the expected value of the stopped random

variable is irrelevant. Instead all we care about is the probability of choosing the

maximum of the variables, in other words we want to choose the stopping time T

that maximizes:

P

(
XT = max

1≤i≤n
Xi

)
= P (XT ≥ X1 ∧ · · · ∧XT ≥ Xn)

Again we first prove a lemma which gives the result for the case n = 2:

Lemma 1.0.10. Let X1, X2 be independent random variables with E[X1], E[X2] < ∞

then the optimal stopping time for choosing the maximum of these two is given by

T = 1 ⇔ P (X1 ≥ X2) >
1

2
(1 + P (X1 = X2))
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in the sense that for any stopping time τ we have P (Xτ = max{X1, X2}) ≤ P (XT =

max{X1, X2}).

Proof. Note that we have:

P (Xτ = max{X1, X2}) = P (1{τ=1}X1 ≥ X2 + 1{τ 6=1}X2 ≥ X1)

= E[1{τ=1}1{X1≥X2} + 1{X2≥X1} − 1{τ=1}1{X2≥X1}]

Note that since X1 and X2 are independent the product measure on these two vari-

ables is simply the product of the two measures, thus:

= P (X2 ≥ X1) +

∫
τ(x1)=1

∫
(2 ∗ 1{x1≥x2} − 1{x1=x2} − 1)dPX2(x2)dPX1(x1)

= P (X2 ≥ X1) +

∫
τ(x1)=1

(2P (x1 ≥ X2)− P (x1 = X2)− 1)dPX1(x1)

Thus to maximize this integral we want to take τ(x) = 1 if and only if P (x ≥ X2) ≥
1
2
(1 + P (x = X2)).

Thus, noting that when X1 = X2 the integrand is zero, we can compute the proba-

bility of success under the optimal strategy as:

P (XT = max{X1, X2}) = P (X2 ≥ X1) + E[(2P (x ≥ X2)− 1)+]
∣∣
x=X1

Where the probability is computed with respect to the random variable X2 and x is

fixed and then the expected value is computed with respect to the random variable

X1.
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