Adaptive ensemble Kalman filtering of nonlinear systems

Tyrus Berry

September 29, 2016

Tyrus Berry Adaptive ensemble Kalman filtering of nonlinear systems

イロト イヨト イヨト イヨト

MiniCV: http://math.gmu.edu/~berry/

Background:

- PhD Mathematics at GMU, Advisor: Tim Sauer
- Postdoc at PSU with John Harlim
- NSF Big Data Postdoc at GMU (current)

Research Interests:

- Geometry of data and nonparametric statistics
- Data-driven and model-free forecasting
- Filtering/forecasting with model error

This is also joint work with Franz Hamilton (postdoc at NC State)

・ 同 ト ・ ヨ ト ・ ヨ ト

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

What is the filtering problem?

Consider a discrete time dynamical system:

$$\begin{array}{rcl} x_k &=& f_k(x_{k-1},\omega_k) \\ y_k &=& h_k(x_k,\nu_k) \end{array}$$

- Where x_k is the state variable, ω_k is stochastic forcing, and the maps f_k define the dynamics
- The maps h_k are called the observation functions, ν_k is observation noise, and y_k is a noisy observation

イロト イポト イヨト イヨト

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

What is the filtering problem?

Consider a discrete time dynamical system:

$$egin{array}{rcl} x_k &=& f_k(x_{k-1},\omega_k) \ y_k &=& h_k(x_k,
u_k) \end{array}$$

- Given the observations $y_1, ..., y_k$ we define three problems:
- Filtering: Estimate the current state $p(x_k | y_1, ..., y_k)$
- **Forecasting:** Estimate a future state $p(x_{k+\ell} | y_1, ..., y_k)$
- Smoothing: Estimate a past state $p(x_{k-\ell} | y_1, ..., y_k)$

・ロン ・回と ・ヨン ・ヨン

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

What is the filtering problem?

Tyrus Berry

Adaptive ensemble Kalman filtering of nonlinear systems

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Two Step Filtering to Find $p(x_k | y_1, ..., y_k)$

- Assume we have $p(x_{k-1} | y_1, ..., y_{k-1})$
- Forecast Step: Find $p(x_k | y_1, ..., y_{k-1})$
- Assimilation Step: Perform a Bayesian update,

 $p(x_k | y_1, ..., y_k) \propto p(x_k | y_1, ..., y_{k-1}) p(y_k | x_k, y_1, ..., y_{k-1})$

Posterior \propto Prior \times Likelihood

소리가 소문가 소문가 소문가

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Kalman Filter

Assume linear dynamics/obs and additive Gaussian noise

$$egin{array}{rcl} x_k &=& F_{k-1} x_{k-1} + \omega_k & & \omega_k \sim \mathcal{N}(0,Q) \ y_k &=& H_k x_k +
u_k & &
u_k \sim \mathcal{N}(0,R) \end{array}$$

For linear systems, easy observability condition:

$$\tilde{H}_{k}^{\ell} = \begin{pmatrix} H_{k} \\ H_{k+1}F_{k} \\ \vdots \\ H_{k+\ell+1}F_{k+\ell}\cdots F_{k} \end{pmatrix}$$

Must be full rank for some ℓ

イロト イヨト イヨト イヨト

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Kalman Filter

Assume linear dynamics/obs and additive Gaussian noise

$$\begin{aligned} x_k &= F_{k-1} x_{k-1} + \omega_k & \omega_k \sim \mathcal{N}(0, Q) \\ y_k &= H_k x_k + \nu_k & \nu_k \sim \mathcal{N}(0, R) \end{aligned}$$

Assume current estimate is Gaussian:

$$p(x_{k-1} | y_1, ..., y_{k-1}) = \mathcal{N}(\hat{x}_{k-1}^a, P_{k-1}^a)$$

・ロト ・回ト ・ヨト ・ヨト

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Kalman Filter: Forecast Step

- At time k-1 we have mean \hat{x}_{k-1}^a and covariance P_{k-1}^a
- Linear combinations of Gaussians are still Gaussian so:

•
$$p(F_{k-1}x_{k-1} | y_1, ..., y_{k-1}) = \mathcal{N}(F_{k-1}\hat{x}_{k-1}^a, F_{k-1}P_{k-1}F_{k-1}^\top)$$

•
$$p(x_k | y_1, ..., y_{k-1}) = \mathcal{N}(F_{k-1}\hat{x}_{k-1}^a, F_{k-1}P_{k-1}F_{k-1}^\top + Q)$$

- Define the Forecast mean: $\hat{x}_k^f \equiv F_{k-1} \hat{x}_{k-1}^a$
- Define the Forecast covariance: $P_k^f \equiv F_{k-1}P_{k-1}^aF_{k-1}^\top + Q$

・ロン ・回 と ・ ヨ と ・ ヨ と

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Kalman Filter: Defining the Likelihood function

- ▶ Recall that $y_k = H_k x_k + \nu_k$ where $\nu_k \sim \mathcal{N}(0, R)$ is Gaussian
- The forecast distribution: $p(x_k | y_1, ..., y_{k-1}) = \mathcal{N}(\hat{x}_k^f, P_k^f)$
- ► Likelihood: $p(y_k | x_k, y_1, ..., y_{k-1}) = \mathcal{N}(H_k \hat{x}_k^f, H_k P_k^f H_k^\top + R)$
- Define the Observation mean: $y_k^f = H_k \hat{x}_k^f$
- Define the Observation covariance: $P_k^y = H_k P_k^f H_k^\top + R$

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Kalman Filter: Assimilation Step

ŀ

• Gaussian prior \times Gaussian likelihood \Rightarrow Gaussian posterior

$$p(y|x)p(x) \propto \exp\left\{-\frac{1}{2}(y - Hx)^{\top}(P^{y})^{-1}(y - Hx) - \frac{1}{2}(x - \hat{x}^{f})^{\top}(P^{f})^{-1}(x - \hat{x}^{f})\right\}$$
$$\propto \exp\left\{-\frac{1}{2}x^{\top}((P^{y})^{-1} + H(P^{f})^{-1}H^{\top})x + x^{\top}(H^{\top}(P^{y})^{-1}y - (P^{f})^{-1}\hat{x}^{f})\right\}$$

- Posterior Covariance: $P^a = ((P^f)^{-1} + H^{\top}(P^y)^{-1}H)^{-1}$
- Posterior Mean: $x^a = P^a \left(H^\top (P^y)^{-1} y (P^f)^{-1} \hat{x}^f \right)$

ロト 不得下 不足下 不足下

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Kalman Filter: Assimilation Step

Kalman Equations: (after some linear algebra...)

- Kalman Gain: $K_k = P_k^f H_k^\top (P_k^y)^{-1}$
- Innovation: $\epsilon_k = y_k y_k^f$
- Posterior Mean: $\hat{x}_k^a = \hat{x}_k^f + K_k \epsilon_k$
- Posterior Covariance: $P_k^a = (I K_k H_k) P_k^f$

• \hat{x}_k^a is the least squares/minimum variance estimator of x_k

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Kalman Filter Summary

$$x_k^f = F_{k-1} x_{k-1}^a$$

$$P_{k}^{f} = F_{k-1}P_{k-1}^{a}F_{k-1}^{T} + Q_{k-1}$$
$$P_{k}^{y} = H_{k}P_{k}^{f}H_{k}^{T} + R_{k-1}$$

$$K_k = P_k^f H_k^T (P_k^y)^{-1}$$
$$P_k^a = (I - K_k H_k) P_k^f$$

$$\epsilon_k = y_k - y_k^f = y_k - H_k x_k^f$$
$$x_k^a = x_k^f + K_k \epsilon_k$$

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

What about nonlinear systems?

Consider a system of the form:

$$egin{array}{rcl} x_{k+1} &=& f(x_k) + \omega_{k+1} & & \omega_{k+1} \sim \mathcal{N}(0,Q) \ y_{k+1} &=& h(x_{k+1}) +
u_{k+1} & &
u_{k+1} \sim \mathcal{N}(0,R) \end{array}$$

- More complicated observability condition (Lie derivatives)
- Extended Kalman Filter (EKF):
 - Linearize $F_k = Df(\hat{x}_k^a)$ and $H_k = Dh(\hat{x}_k^f)$
- Problem: State estimate \hat{x}_k^a may not be well localized
- Solution: Ensemble Kalman Filter (EnKF)

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Ensemble Kalman Filter (EnKF)

Generate an ensemble with the current statistics (use matrix square root):

$$x_{t}^{i} = \text{"sigma points" on semimajor axes}$$

$$x_{t}^{f} = \frac{1}{2n} \sum F(x_{t}^{i})$$

$$P_{xx}^{f} = \frac{1}{2n-1} \sum (F(x_{t}^{i}) - x_{t}^{f})(F(x_{t}^{i}) - x_{t}^{f})^{T} + Q$$

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Ensemble Kalman Filter (EnKF)

Calculate $y_t^i = H(F(x_t^i))$. Set $y_t^f = \frac{1}{2n} \sum_i y_t^i$. $P_{yy} = (2n-1)^{-1} \sum_i (y_t^i - y_t^f) (y_t^i - y_t^f)^T + R$ $P_{xy} = (2n-1)^{-1} \sum_i (F(x_t^i) - x_t^f) (y_t^i - y_t^f)^T$ $K = P_{xy} P_{yy}^{-1}$ and $P_{xx}^a = P_{xx}^f - K P_{yy} K^T$ $x_{t+1}^a = x_t^f + K(y_t - y_t^f)$

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Parameter Estimation

When the model has parameters p,

$$x_{k+1} = f(x_k, p) + \omega_{k+1}$$

- Can augment the state $\tilde{x}_k = [x_k, p_k]$
- Introduce trivial dynamics for p

$$x_{k+1} = f(x_k, p_k) + \omega_{k+1}$$
$$p_{k+1} = p_k + \omega_{k+1}^p$$

► Need to tune the covariance of ω^p_{k+1}

イロト イポト イヨト イヨト

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Example of Parameter Estimation

Consider the Hodgkin-Huxley neuron model, expanded to a network of n equations

$$\begin{split} \dot{V}_{i} &= -g_{Na}m^{3}h(V_{i} - E_{Na}) - g_{K}n^{4}(V_{i} - E_{K}) - g_{L}(V_{i} - E_{L}) \\ &+ I + \sum_{j \neq i}^{n} \Gamma_{HH}(V_{j})V_{j} \\ \dot{m}_{i} &= a_{m}(V_{i})(1 - m_{i}) - b_{m}(V_{i})m_{i} \\ \dot{h}_{i} &= a_{h}(V_{i})(1 - h_{i}) - b_{h}(V_{i})h_{i} \\ \dot{n}_{i} &= a_{n}(V_{i})(1 - n_{i}) - b_{n}(V_{i})n_{i} \\ \Gamma_{HH}(V_{j}) &= \beta_{ij}/(1 + e^{-10(V_{j} + 40)}) \end{split}$$

Only observe the voltages V_i , recover the hidden variables and the connection parameters β

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Example of Parameter Estimation

Can even turn connections on and off (grey dashes) Variance estimate \Rightarrow statistical test (black dashes)

Tyrus Berry Adaptive ensemble Kalman filtering of nonlinear systems

- (E

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Nonlinear Kalman-type Filter: Influence of Q and R

- Simple example with full observation and diagonal noise covariances
- Red indicates RMSE of unfiltered observations
- Black is RMSE of 'optimal' filter (true covariances known)

The Filtering Problem The Kalman Filter Nonlinear Kalman-type Filters

Nonlinear Kalman-type Filter: Influence of Q and R

Adaptive Filter: Estimating Q and R

 \blacktriangleright Innovations contain information about Q and R

$$\begin{aligned} \epsilon_{k} &= y_{k} - y_{k}^{f} \\ &= h(x_{k}) + \nu_{k} - h(x_{k}^{f}) \\ &= h(f(x_{k-1}) + \omega_{k}) - h(f(x_{k-1}^{a})) + \nu_{k} \\ &\approx H_{k}F_{k-1}(x_{k-1} - x_{k-1}^{a}) + H_{k}\omega_{k} + \nu_{k} \end{aligned}$$

▶ IDEA: Use innovations to produce samples of *Q* and *R* :

$$\mathbb{E}[\epsilon_k \epsilon_k^T] \approx HP^f H^T + R \\ \mathbb{E}[\epsilon_{k+1} \epsilon_k^T] \approx HFP^e H^T - HFK\mathbb{E}[\epsilon_k \epsilon_k^T] \\ P^e \approx FP^a F^T + Q$$

 In the linear case this is rigorous and was first solved by Mehra in 1970

Adaptive Filter: Estimating Q and R

► To find Q and R we estimate H_k and F_{k-1} from the ensemble and invert the equations:

$$\begin{aligned} \mathbb{E}[\epsilon_k \epsilon_k^T] &\approx & HP^f H^T + R \\ \mathbb{E}[\epsilon_{k+1} \epsilon_k^T] &\approx & HFP^e H^T - HFK\mathbb{E}[\epsilon_k \epsilon_k^T] \end{aligned}$$

▶ This gives the following *empirical* estimates of *Q_k* and *R_k*:

$$P_k^e = (H_{k+1}F_k)^{-1}(\epsilon_{k+1}\epsilon_k^T + H_{k+1}F_kK_k\epsilon_k\epsilon_k^T)H_k^{-T}$$

$$Q_k^e = P_k^e - F_{k-1}P_{k-1}^aF_{k-1}^T$$

$$R_k^e = \epsilon_k\epsilon_k^T - H_kP_k^fH_k^T$$

 Note: P^e_k is an empirical estimate of the background covariance

An Adaptive Kalman-Type Filter for Nonlinear Problems

We combine the estimates of Q and R with a moving average

Original Kalman Eqs.

Our Additional Update

$$P_{k}^{f} = F_{k-1}P_{k-1}^{a}F_{k-1}^{T} + Q_{k-1} P_{k-1}^{e} = F_{k-1}^{-1}H_{k}^{-1}\epsilon_{k}\epsilon_{k-1}^{T}H_{k-1}^{-T}$$

$$P_{k}^{y} = H_{k}P_{k}^{f}H_{k}^{T} + R_{k-1} + K_{k-1}\epsilon_{k-1}\epsilon_{k-1}^{T}H_{k-1}^{-T}$$

$$K_{k} = P_{k}^{f} H_{k}^{T} (P_{k}^{y})^{-1} \qquad Q_{k-1}^{e} = P_{k-1}^{e} - F_{k-2} P_{k-2}^{a} F_{k-2}^{T} P_{k}^{a} = (I - K_{k} H_{k}) P_{k}^{f} \qquad R_{k-1}^{e} = \epsilon_{k-1} \epsilon_{k-1}^{T} - H_{k-1} P_{k-1}^{f} H_{k-1}^{T}$$

(4月) (4日) (4日)

How does this compare to inflation?

- ▶ We extend Kalman's equations to estimate Q and R
- Estimates converge for linear models with Gaussian noise
- When applied to nonlinear, non-Gaussian problems
 - We interpret Q as an additive inflation
 - ► *Q* can have complex structure, possibly more effective than multiplicative inflation?
 - Downside: many more parameters than multiplicative inflation
- Somewhat less ad hoc than other inflation techniques?

イロト イポト イヨト イヨト

Observability and Parameterization of Q

Recall:

$$P_{k-1}^{e} = F_{k-1}^{-1} H_{k}^{-1} \epsilon_{k} \epsilon_{k-1}^{T} H_{k-1}^{-T} + K_{k-1} \epsilon_{k-1} \epsilon_{k-1}^{T} H_{k-1}^{-T}$$

$$Q_{k-1}^{e} = P_{k-1}^{e} - F_{k-2} P_{k-2}^{a} F_{k-2}^{T}$$

Together these equations imply that:

$$H_k F_{k-1} Q_k^e H_{k-1}^T = \epsilon_k \epsilon_{k-1}^T + H_k F_{k-1} K_{k-1} \epsilon_{k-1} \epsilon_{k-1}^T \epsilon_{k-1}^T \epsilon_{k-1}^T \epsilon_{k-1}^T \epsilon_{k-1}^T$$

Set C_k equal to the right hand side (we simply compute C_k). Parameterize $Q_k^e = \sum_{i=1}^s q_i \hat{Q}_i$ where q_i are scalar parameters and \hat{Q}_i are 'shape' matrices.

(4月) (4日) (4日)

Observability and Parameterization of Q

We now need to solve:

$$C_k = \sum_{i=1}^s q_i H_k F_{k-1} \hat{Q}_i H_{k-1}^T$$

We vectorize the equation as

$$\operatorname{vec}(C_{k}) = \sum_{i=1}^{s} q_{i} \operatorname{vec}(H_{k}F_{k-1}\hat{Q}_{i}H_{k-1}^{T}) = A_{k}[q_{1},...,q_{s}]^{T}$$

where A_k is an m^2 -by-l matrix where the *i*-th row is given by $\operatorname{vec}(H_k F_{k-1} \hat{Q}_i H_{k-1}^T)$. We can the solve for the parameters $[q_1, ..., q_s]^T$ by least squares.

伺 と く き と く き と

Adaptive Filter: Application to Lorenz-96

 We will apply the adaptive EnKF to the 40-dimensional Lorenz96 model integrated over a time step Δt = 0.05

$$\frac{dx^{i}}{dt} = -x^{i-2}x^{i-1} + x^{i-1}x^{i+1} - x^{i} + F$$

▶ We augment the model with Gaussian white noise

$$\begin{aligned} x_k &= f(x_{k-1}) + \omega_k & \omega_k = \mathcal{N}(0, Q) \\ y_k &= h(x_k) + \nu_k & \nu_k = \mathcal{N}(0, R) \end{aligned}$$

- We will consider full and sparse observations
- The Adaptive EnKF uses F = 8
- We will consider model error where the true $F^i = \mathcal{N}(8, 16)$

Recovering Q and R, Full Observability

- ∢ ⊒ →

Recovering Q and R, Sparse Observability

Observing 10 sites results in divergence with the true Q and R

イロト イポト イヨト イヨト

Compensating for Model Error

The adaptive filter compensates for errors in the forcing F^i

< E

Integration with the LETKF

Simply find a local Q and R for each region

・ロト ・日本 ・モート ・モート

Kalman-Takens Filter: Throwing out the model...

- ▶ Starting with historical observations {*y*₀, ..., *y_n*}
- Form Takens delay-embedding state vectors x_i = (y_i, y_{i-1}, ..., y_{i-d})[⊤]
- Build an EnKF:
 - Apply analog forecast to each ensemble member
 - Use the observation function $Hx_i = y_i$
 - Crucial to estimate Q and R

Kalman-Takens applied to L96

<ロ> <同> <同> < 同> < 同> < 同>

Papers with Franz Hamilton and Tim Sauer http://math.gmu.edu/~berry/

- Ensemble Kalman filtering without a model. Phys. Rev. X (2016).
- Adaptive ensemble Kalman filtering of nonlinear systems. Tellus A (2013).
- Real-time tracking of neuronal network structure using data assimilation. Phys. Rev. E (2013).

Related/Background Material

- R. Mehra, 1970: On the identification of variances and adaptive Kalman filtering.
- P. R. Bélanger, 1974: Estimation of noise covariance matrices for a linear time-varying stochastic process.
- J. Anderson, 2007: An adaptive covariance inflation error correction algorithm for ensemble filters.
- H. Li, E. Kalnay, T. Miyoshi, 2009: Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter.
- B. Hunt, E. Kostelich, I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter.
- E. Ott, et al. 2004: A local ensemble Kalman filter for atmospheric data assimilation.