

Nonlinear Data Analysis

Lessons and Challenges

Tyrus Berry George Mason University

Nov. 29, 2017

MOTIVATING EXAMPLE: NEMATIC LIQUID CRYSTAL

Video provided by Rob Cressman, Krasnow Institute, GMU

DIMENSIONALITY 00000 HIDDEN STRUCTURE

NONUNIFORMITY

CLUSTERS H 00000 0

HOMOLOGY SPATIOTEMPORAL

L CHALLENGES

FINDING HIDDEN STRUCTURE IN DATA

OUTLINE

Lessons:

- Dimensionality: Intrinsic vs. Extrinsic
- ► Non-uniformity: Respect the density
- Meta-structure: Images and times series

Challenges:

- Curse-of-dimensionality (intrinsic)
- Extrapolation

NONUNIFORMITY

CLUSTERS

HOMOLOGY

SPATIOTEMPORAL

CHALLENGES

HIDDEN STRUCTURE

DIMENSIONALITY

00000

θ	X	У
0.0628	0.9980	0.0628
0.1257	0.9921	0.1253
0.1885	0.9823	0.1874
0.2513	0.9686	0.2487
0.3142	0.9511	0.3090
0.3770	0.9298	0.3681
0.4398	0.9048	0.4258
0.5027	0.8763	0.4818
:	:	
6.0319	0.9686	-0.2487
6.0947	0.9823	-0.1874
6.1575	0.9921	-0.1253
6.2204	0.9980	-0.0628
6.2832	1.0000	-0.0000

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

NONUNIFORMITY

CLUSTERS

HIDDEN STRUCTURE

DIMENSIONALITY

00000

► Intrinsic Dimension = 1

HOMOLOGY

$$\theta_i = 2\pi \frac{i}{100}$$

SPATIOTEMPORAL

CHALLENGES

$$(x_i, y_i) = (\cos(\theta_i), \sin(\theta_i))$$

<ロト < 四ト < 三ト < 三ト < 三ト = 三</p>

NONUNIFORMITY

CLUSTERS

HIDDEN STRUCTURE

DIMENSIONALITY

00000

► Intrinsic Dimension = 1

HOMOLOGY

$$\theta_i = 2\pi \frac{i}{100}$$

SPATIOTEMPORAL

CHALLENGES

Extrinsic Dimension = 3

$$(x_i, y_i, z_i) = (\cos(\theta_i), \sin(\theta_i), \mathbf{0})$$

<ロト < 同ト < 三ト < 三ト < 三 ・ つ < ○</p>

NONUNIFORMITY

CLUSTERS

Intrinsic Dimension = 1

HOMOLOGY

HIDDEN STRUCTURE

DIMENSIONALITY

00000

$$\theta_i = 2\pi \frac{i}{100}$$

SPATIOTEMPORAL

CHALLENGES

- Extrinsic Dimension = 3
 - $x_i = \cos(\theta_i)$ $y_i = \sin(\theta_i)$ $z_i = x_i + y_i$

NONUNIFORMITY

► Intrinsic Dimension = 1

HIDDEN STRUCTURE

DIMENSIONALITY

00000

$$\theta_i = 2\pi \frac{i}{100}$$

CLUSTERS

HOMOLOGY

SPATIOTEMPORAL

CHALLENGES

• Extrinsic Dimension = 2 + N

$$\begin{array}{l} x_i = \cos(\theta_i) \\ y_i = \sin(\theta_i) \\ z_i^1 = a_1 x_i + b_1 y_i \\ \vdots \\ z_i^N = a_N x_i + b_N y_i \end{array} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ a_1 & a_2 \\ \vdots & \vdots \\ a_N & b_N \end{bmatrix} \begin{bmatrix} \cos(\theta_i) \\ \sin(\theta_i) \end{bmatrix} = A \begin{bmatrix} \cos(\theta_i) \\ \sin(\theta_i) \end{bmatrix}$$

A is a $(2 + N) \times 2$ matrix

PRINCIPAL COMPONENT ANALYSIS (PCA)

► Matrix times *intrinsic* data ⇒ limitless redundancy

- ► These *linear* redundancies are easy to remove
- PCA finds X given Y = AX
- Does this really happen?

DIMENSIONALITY

HIDDEN STRUCTURE

NONUNIFORMITY

CLUSTERS HO

HOMOLOGY SPATIC

SPATIOTEMPORAL CHALLENGES

DOES THIS REALLY HAPPEN?

Consider 11×11 subimages from a pattern:

DIMENSIONALITY 00000 HIDDEN STRUCTURE

NONUNIFORMITY

CLUSTERS H

HOMOLOGY SPATIOTEMPORAL

RAL CHALLENGES

DOES THIS REALLY HAPPEN?

Subimage Coordinates

DOES THIS REALLY HAPPEN?

Zebra Stripes

PCA Coordinates

<ロ><部</p>

DIMENSIONALITY

HIDDEN STRUCTURE

NONUNIFORMITY

CLUSTERS H

HOMOLOGY SF

SPATIOTEMPORAL CHALLENGES

DOES THIS REALLY HAPPEN?

Fish Scales

PCA Coordinates

<ロ>

DIMENSIONALITY I

HIDDEN STRUCTURE

NONUNIFORMITY

CLUSTERS H 00000 0

HOMOLOGY

SPATIOTEMPORAL

CHALLENGES

DOES THIS REALLY HAPPEN?

Honeycomb

PCA Coordinates

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PRINCIPAL COMPONENT ANALYSIS (PCA)

► Matrix times *intrinsic* data ⇒ limitless redundancy

- ► These *linear* redundancies are easy to remove
- PCA finds X given Y = AX
- ► What about nonlinear redundancies?

$\mathsf{NONLINEAR} \Rightarrow \mathsf{GRAPH}$

- Represent the nonlinear curved structure with a graph
- ► Locally linear ⇒ Connect nearby points

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$\mathsf{NONLINEAR} \Rightarrow \mathsf{GRAPH}$

Problem: Noise and outliers can lead to bridging

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Nonlinear \Rightarrow Graph

HIDDEN STRUCTURE

00000000000

DIMENSIONALITY

► To prevent bridging, edges weighted: $K_{\delta}(x, y) = e^{-\frac{||x-y||^2}{4\delta^2}}$

CLUSTERS

HOMOLOGY

SPATIOTEMPORAL

CHALLENGES

► Theorem: Graph encodes all nonlinear information

NONUNIFORMITY

<ロト < 団 ト < 三 ト < 三 ト 三 の < ()</p>

DIMENSIONALITY CHORNEL NONUNIFORMITY CLUSTERS HOMOLOGY SPATIOTEMPORAL CHALLENGES

$\mathsf{NONLINEAR} \Rightarrow \mathsf{GRAPH}$

- Equivalently: Restrict to closer points
- Does this always work?

NONUNIFORM DENSITY: FIXED BALLS

Black outlines indicate true clusters:

(a) Dense regions bridged before connecting sparse region (b) Graph connecting all points with distance less than ϵ

$$||\mathbf{x} - \mathbf{y}|| < \epsilon$$

NONUNIFORM DENSITY: NEAREST NEIGHBORS (NN)

(c) Connect each point to its nearest neighbor (NN)

(d) Connect each point to its two nearest neighbors (2NN)

DIMENSIONALITY 00000 HIDDEN STRUCTURE

NONUNIFORMITY

CLUSTERS H

HOMOLOGY

SPATIOTEMPORAL

CHALLENGES

NONUNIFORM DENSITY: CKNN

(e) Distance to 10-th nearest neighbor

(f) Continuous k-Nearest Neighbors (CkNN)

$$\frac{||\boldsymbol{x} - \boldsymbol{y}||}{\sqrt{||\boldsymbol{x} - \mathsf{kNN}(\boldsymbol{x})|| \cdot ||\boldsymbol{y} - \mathsf{kNN}(\boldsymbol{y})||}} < \delta$$

DIMENSIONALITY HI

HIDDEN STRUCTURE

NONUNIFORMITY 00000000 CLUSTERS HO

HOMOLOGY SPATIC

SPATIOTEMPORAL CHALLENGES

NONUNIFORM DENSITY: MORE DATA?

(g) Five times more data, 4 nearest neighbors works

Does nearest neighbors always work given sufficient data?

NONUNIFORM DENSITY: CONCLUSION

(h) Real data has sparse tails: More data = bigger gaps!

Theorem: NN fails even with infinite data. CkNN succeeds.

HOW CKNN 'SEES' DATA

CkNN defines a symmetric measure of dissimilarity:

$$d_{\mathsf{CkNN}}(x, y) = \frac{||x - y||}{\sqrt{||x - \mathsf{kNN}(x)|| \cdot ||y - \mathsf{kNN}(y)||}}$$

How CKNN 'SEES' DATA

HIDDEN STRUCTURE

DIMENSIONALITY

CkNN defines a symmetric measure of dissimilarity:

NONUNIFORMITY

00000000

$$d_{\mathsf{CkNN}}(x,y) = \frac{||x-y||}{\sqrt{||x-\mathsf{kNN}(x)|| \cdot ||y-\mathsf{kNN}(y)||}}$$

CLUSTERS

HOMOLOGY

SPATIOTEMPORAL

CHALLENGES

DIMENSIONALITY 00000 HIDDEN STRUCTURE

NONUNIFORMITY

CLUSTERS HO

HOMOLOGY SPAT

SPATIOTEMPORAL CHALLENGES

IMPROVED CLUSTERING USING CKNN

IMAGE SEGMENTATION

Original Image: Break into subimages

Images produced by Marilyn Vazquez.

IMAGE SEGMENTATION

Clustering shown projected to two principal components

with low density points removed

all points

Images produced by Marilyn Vazquez.

IMAGE SEGMENTATION

Results - synthetic images

Images produced by Marilyn Vazquez.

DIMENSIONALITY 00000 HIDDEN STRUCTURE

NONUNIFORMITY

CLUSTERS HO

HOMOLOGY SPATI

SPATIOTEMPORAL CHALLENGES

IMAGE SEGMENTATION: REAL IMAGES

Images produced by Marilyn Vazquez.

DIMENSIONALITY 00000 HIDDEN STRUCTURE

NONUNIFORMITY

CLUSTERS H

HOMOLOGY

SPATIOTEMPORAL

CHALLENGES

IMAGE SEGMENTATION: REAL IMAGES

(g)

Original images by Mark R. Stoudt and Steve P. Mates. Analysis by Marilyn Vazquez.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PERSISTENT VS. CONSISTENT HOMOLOGY

 ε -ball

PERSISTENT VS. CONSISTENT HOMOLOGY

A noncompact example, with ε -balls

Adding data cannot help.

PERSISTENT VS. CONSISTENT HOMOLOGY

Noncompact example, with CkNN

IDENTIFYING PATTERNS

Compute homology of point cloud of $p \times p$ subimages

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SPATIOTEMPORAL DATA

- ► Spatial ⇒ Short spatial windows (subimages)
- ► Temporal ⇒ Short time windows (delay embedding)

TAKENS RECONSTRUCTION

SPIRAL WAVES

$$u_t = \Delta u + \frac{1}{\rho}u(1-u)\left(u - \frac{v+b}{a}\right)$$

$$v_t = u - v$$

(D. Barkley 1991)

<ロ> < 団> < 豆> < 豆> < 豆> < 豆> < 豆</p>

SPIRAL WAVES

... and later ...

Depending on *a* and *b*, spirals may or may not meander.

SPIRAL WAVES: NON-MEANDERING

<ロト < 団 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ </p>

SPIRAL WAVES: MEANDERING

<ロト < 団 ト < 三 ト < 三 ト 三 の < ()</p>

DIMENSIONALITY 00000 HIDDEN STRUCTURE

NONUNIFORMITY

CLUSTERS HO

HOMOLOGY SPATIOTEMPC

SPATIOTEMPORAL CHALLENGES

LIQUID CRYSTAL EXPERIMENT

Electroconvection in liquid crystal produces spatiotemporal patterns.

Sample is 0.1×0.1 mm and 25 μ m thick.

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Driven at 22 V.

DIMENSIONALITY	HIDDEN STRUCTURE	Nonuniformity	CLUSTERS	Homology	SPATIOTEMPORAL	CHALLENGES
00000	00000000000	00000000	00000	0000	000000000	000

LIQUID CRYSTAL

DIMENSIONALITY	HIDDEN STRUCTURE	Nonuniformity	CLUSTERS	Homology	SPATIOTEMPORAL	CHALLENGES
00000	0000000000	00000000	00000	0000	00000000	000

LIQUID CRYSTAL

<□▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

CURSE-OF-(INTRINSIC)-DIMENSIONALITY

- Try to cut into independent components
- Otherwise math/stat says it is impossible
- Need more/better assumptions and/or questions
- Better assumptions: Smoothness
- Better questions: Feature of interest (supervised)

₹ 990

イロト イ理ト イヨト イヨト

EXTRAPOLATION

Given only part of a structure recover the whole

Need to exploit symmetry

EXTRAPOLATION

Given only part of a structure recover the whole

Need to exploit symmetry