
Data Assimilation Diffusion Forecast El Niño

DATA ASSIMILATION

I Estimate state/parameters from noisy observations

I Requires noise statistics (typically unknown)

I Adaptive data assimilation:

I Estimates noise statistics ‘online’

I Compensates for model error
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REAL-TIME TRACKING OF NEURONAL NETWORK . . . PHYSICAL REVIEW E 88, 052715 (2013)

FIG. 5. Estimated network connection matrices for 160 sec of data from two MEA networks. The percentage time of statistical significance
for (a) smaller network with five active electrodes and (b) larger network with 12 active electrodes is shown. A βij connection was determined to
be significant by our method when its 95% confidence region did not include 0. In (a), 7 of 20 possible connections were found to be significant
throughout the entire data set. In (b), 28 of 132 possible connections were found to be significant for at least 50% of the time interval.

that the connection exists, at least within the confidence level
used.

Figure 5(a) shows the estimated network connection matrix
and corresponding time of statistical significance for 160 sec of
data from the small MEA network with five active electrodes
at the 95% confidence level. Of the 20 possible connections
in this network, only seven were determined to be statistically
significant. These were found significant throughout the entire
data series showing that our method was highly confident in
their existence.

Figure 5(b) shows the estimated connection matrix com-
puted from a 160-sec interval of data from the larger network
with 12 active electrodes at the 95% confidence level. Out of
the possible 132 connections, 28 were found to be significant
at some time during the interval. This larger network presented
questionable cases, typically whereby a connection parameter
was initially not significant but became an identified link as
more data were assimilated. All of the 28 connections that were
statistically significant for part of the interval were significant
for at least 50% of the interval, and 14 of the 28 were significant
during more than 90% of the interval, as shown in the figure.

V. CONCLUSION

A method that can carry out sequential tracking of neu-
ronal network links has a major advantage for experimental
purposes. Using an EnKF with a general neuron model is
a way to provide a statistically driven estimate of network
connectivity that is updated continuously as data arrive, unlike
offline methods such as [14–16]. This allows application to
network structures with moderate nonstationarity, a typical
feature of neural ensembles and biological networks in general.
As shown above, this algorithm for detecting connectivity
meets our criteria of being statistically based, robust to error,
and capable of real-time implementation.

We showed in simulation and with measured data from
neural cultures that such a method can work successfully. The
choice of the model in the EnKF plays a critical role. Figures 2
and 3 illustrate the dependence on model mismatch. Certainly,

if the model is not representative of the basic dynamics of the
underlying system, results will be compromised. A feature of
this approach is that allowing parameters of the mathematical
model in the EnKF to float may temper the mismatch between
the dynamics of the model and the experimental system,
resulting in more accuracy in the fitted connection parameters.
A deeper study of the dependence on models is a fruitful
direction for future work.

A related question is whether nonstationarity of the un-
derlying system can confound attempts to find the correct
connections. Undoubtedly this is true in some circumstances;
in particular, the connections may be changing during the
experiment. We attempt to minimize false conclusions by
allowing parameters in the model to drift along with the
data, to possibly correct for some of the nonstationarity in
the experimental system, independent of the connections, but
careful analysis of this possibility is beyond the scope of this
work.

While the MEAs are plated at a high density of neuronal
cells, observation of the network is restricted to the array’s
64 electrodes. While this may seem an undersampling of the
network, tracking the connections between observed neural
ensembles at each electrode may allow us to implement
significant network control. This technique opens up several
possible experimental strategies, including pharmacological
and electrophysiological studies where the effects of an applied
drug or pulse pattern on connectivity are to be determined.
The ability to continuously track connectivity is designed
to provide real-time feedback in an experimental situation,
allowing an researcher to adjust observation, control, or other
interventions.

Although we expect the statistical method outlined here
to greatly expedite several proximate research goals such as
tracking and control of neural cultures, the further objective
of generalizing the application of this statistical method from
cultures to the in vivo brain presents clear challenges. While
the cultures present dynamics that are on the whole relatively
nonsynchronous, activity arising from giant depolarizing
potentials [30] and sharp wave ripple events [31] show
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B. and Sauer (Tellus A, 2013)
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KALMAN-TAKENS FILTER

Filtering without a model or partially known model
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Data Assimilation Diffusion Forecast El Niño

DIFFUSION FORECAST

I Forecast is entirely data driven (model free)

I Predicts a probability distribution

I Estimates probabilities of extreme events

I Also used to correct model error

p(x , t) Diffusion Forecast−−−−−−−−−−−→ p(x , t + τ) = eτL
∗
p(x , t)y〈p,ϕj〉

x∑
j cjϕj q

~c(t)
Alj≡E[〈ϕj ,Sϕl 〉q ]−−−−−−−−−−−−−−−−−→ ~c(t + τ) = A~c(t).

B., Harlim, and Giannakis (Physical Review E, 2015)
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MANIFOLD LEARNING ⇒ CUSTOM ‘FOURIER’ BASIS

I Optimal basis: Minimum variance Alj ≡ E[〈ϕj ,Sϕl〉q]
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DIFFUSION FORECAST EXAMPLE

No Model Perfect Model
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FORECASTING THE EL NIÑO INDEX

Sea surface temperatures (SST) in the Niño indices:

Index: 3-month running average SST anomaly
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FORECASTING THE EL NIÑO INDEX
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13-MONTH FORECAST
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