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Nonlinear Kalman-type Filter

Nonlinear Kalman-type Filter: Problem Setup

» We consider a system of the form:
Xer1 = F(xi) + wit w = N(0,Q)
Yet1 = h(Xks1) + vkt v~ N(0,R)
» We initially assume Gaussian system and observation noise
» Our goal is to estimate the covariance matrices Q and R as
part of the filter procedure
» Later we consider @ to be an additive inflation which

attempts to compensate for model error
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Nonlinear Kalman-type Filter

Nonlinear Kalman-type Filter: Influence of Q and R

» Simple example with full
observation and diagonal
noise covariances
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Nonlinear Kalman-type Filter

Nonlinear Kalman-type Filter: Influence of Q and R

Standard Kalman Update:

Pi = FaPioiFly+ Qo
P! = HkP{H! + Rc_1
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Adaptive Filtering

Adaptive Filter: Estimating Q and R

» Innovations contain information about @ and R

€k = Yk— )//f

= h(xk)+ vk — h(x,f)

= h(f(x—1) + wic) = h(F(x7_1)) + vk

~ Hka_]_(Xk_l — lefl) =+ kak —+ vy
» IDEA: Use innovations to produce samples of Q and R :

Elexel] ~ HP'HT +R

Elexs1el] ~ HFPHT — HFKE[e e[ ]
P¢ ~ FPFT +Q
> In the linear case this is rigorous and was first solved by
Mehra in 1970



Adaptive Filtering

Adaptive Filter: Estimating Q and R

» To find @ and R we estimate H, and Fy_; from the ensemble
and invert the equations:

Elexel] ~ HPTHT +R
Elexs1€]] ~ HFP*HT — HFKE[e e[ ]

> This gives the following empirical estimates of Qx and Rj:

PE = (Hk+le)71(6k+1€IZ— + Hk+1FkKk6k6IZ—)Hk_T
Qf = Pf—F1Pi_ Fl 4
Rf = exe] — HkPLH!

> Note: P is an empirical estimate of the background
covariance
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Adaptive Filtering

An Adaptive Kalman-Type Filter for Nonlinear Problems

We combine the estimates of @ and R with a moving average

Original Kalman Egs. Our Additional Update

P/f = Fe-1Pi4 FkT—l + Q-1 PRy = F[leEIEkezT_lHI_T:l

P! = HyPLH! + R4 + Ki_rex—164_1H |

Ke = 'D/fHkT('D/{)_l 05—1 = Pf—l - Fk72P/f—2FkT—2

P = (I — KcH)Pf RE | = ex_1ef 1 —Hea P H
&k = Yk—yi Qe = Qo1+ (Qf_1— Qu—1)/7
X,f = X}: + Kiex Ry = Ri_1+ (le—l — Rk_l)/T
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Adaptive Filtering

How does this compare to inflation?

>

We extend Kalman's equations to estimate @ and R

v

Estimates converge for linear models with Gaussian noise

v

When applied to nonlinear, non-Gaussian problems
» We interpret @ as an additive inflation

» @ can have complex structure, possibly more effective than
multiplicative inflation?

» Downside: many more parameters than multiplicative inflation

v

Somewhat less ad hoc than other inflation techniques?
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Adaptive Filtering

Observability and Parameterization of Q

Recall:

1yl I H-T T -T
Py = F H exee 1H )+ Kirek—ie 1H

Qi1 = Pia— Fk72pf<’72FkT72
Together these equations imply that:

HeFro1QEH_y = exef_1 + HiFro1Ki—1€x—164_1
—HiFi—1P 1 Fl o H

Set Ci equal to the right hand side (we simply compute Cg).
Parameterize Qf = > 1 qiQ; where g; are scalar parameters and
Q; are ‘shape’ matrices.
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Adaptive Filtering

Observability and Parameterization of Q

We now need to solve:
S
Ck = Z qiHkF1QiH] 4
i=1
We vectorize the equation as
vec(Cy) = Zq,veC(Hka 1QiHL) = Adlar, - as]”
i=1

where Ay is an m?-by-/ matrix where the i-th row is given by
VeC(Hka,;[ Q,’HZ_l).
We can the solve for the parameters [q1, ..., gs] " by least squares.
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Application to Lorenz-96

Adaptive Filter: Application to Lorenz-96

» We will apply the adaptive EnKF to the 40-dimensional
Lorenz96 model integrated over a time step At = 0.05
dx’

dt

R I S SRRV S B AS NV S
» We augment the model with Gaussian white noise

X = f(xk—1)+ wk wr =N (0, Q)
Yk = h(Xk)+Vk Vg :N(O,R

v

We will consider full and sparse observations
The Adaptive EnKF uses F =8
We will consider model error where the true F' = A/(8,16)
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Application to Lorenz-96

Recovering @ and R, Full Observability

True Covariance Initial Guess Final Estimate Difference
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RMSE shown for the initial guess covariances (red) the true Q and
R (black) and the adaptive filter (blue)
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Application to Lorenz-96

Recovering @ and R, Sparse Observability

Observing 10 sites results in divergence with the true @ and R

True Covariance Initial Guess Final Estimate Difference
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RMSE shown for the initial guess covariances (red) the true Q and
R (black) and the adaptive filter (blue)
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Application to Lorenz-96

Compensating for Model Error

The adaptive filter compensates for errors in the forcing F'

True Covariance Initial Guess Final Estimate Difference
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EnKF (black) and the adaptive filter (blue)
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Application to Lorenz-96

Integration with the LETKF

Simply find a local @ and R for each region

True Covariance Initial Guess Final Estimate Difference
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RMSE shown for the initial guess covariances (red) the true Q and
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Application to Lorenz-96
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