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Nonlinear Kalman-type Filter: Problem Setup

I We consider a system of the form:

xk+1 = f (xk) + ωk+1

yk+1 = h(xk+1) + νk+1

ω ≈ N (0,Q)

ν ≈ N (0,R)

I We initially assume Gaussian system and observation noise

I Our goal is to estimate the covariance matrices Q and R as
part of the filter procedure

I Later we consider Q to be an additive inflation which
attempts to compensate for model error

Tyrus Berry Adaptive ensemble Kalman filtering of nonlinear systems



Nonlinear Kalman-type Filter
Adaptive Filtering

Application to Lorenz-96

Nonlinear Kalman-type Filter: Influence of Q and R

I Simple example with full
observation and diagonal
noise covariances

I Red indicates RMSE of
unfiltered observations

I Black is RMSE of ‘optimal’
filter (true covariances
known)
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Nonlinear Kalman-type Filter: Influence of Q and R

Standard Kalman Update:

P f
k = Fk−1P

a
k−1F

T
k−1 + Qk−1

Py
k = HkP

f
kH

T
k + Rk−1

Kk = P f
kH

T
k (Py

k )−1

Pa
k = (I − KkHk)P f

k

εk = yk − y fk = yk − Hkx
f
k

xak = x fk + Kkεk
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Adaptive Filter: Estimating Q and R

I Innovations contain information about Q and R

εk = yk − y fk

= h(xk) + νk − h(x fk )

= h(f (xk−1) + ωk)− h(f (xak−1)) + νk

≈ HkFk−1(xk−1 − xak−1) + Hkωk + νk

I IDEA: Use innovations to produce samples of Q and R :

E[εkε
T
k ] ≈ HP fHT + R

E[εk+1ε
T
k ] ≈ HFPeHT − HFKE[εkε

T
k ]

Pe ≈ FPaFT + Q

I In the linear case this is rigorous and was first solved by
Mehra in 1970
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Adaptive Filter: Estimating Q and R

I To find Q and R we estimate Hk and Fk−1 from the ensemble
and invert the equations:

E[εkε
T
k ] ≈ HP fHT + R

E[εk+1ε
T
k ] ≈ HFPeHT − HFKE[εkε

T
k ]

I This gives the following empirical estimates of Qk and Rk :

Pe
k = (Hk+1Fk)−1(εk+1ε

T
k + Hk+1FkKkεkε

T
k )H−T

k

Qe
k = Pe

k − Fk−1P
a
k−1F

T
k−1

Re
k = εkε

T
k − HkP

f
kH

T
k

I Note: Pe
k is an empirical estimate of the background

covariance
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An Adaptive Kalman-Type Filter for Nonlinear Problems

We combine the estimates of Q and R with a moving average

Original Kalman Eqs.

P f
k = Fk−1P

a
k−1F

T
k−1 + Qk−1

Py
k = HkP

f
kH

T
k + Rk−1

Kk = P f
kH

T
k (Py

k )−1

Pa
k = (I − KkHk)P f

k

εk = yk − y fk

xak = x fk + Kkεk

Our Additional Update

Pe
k−1 = F−1

k−1H
−1
k εkε

T
k−1H

−T
k−1

+ Kk−1εk−1ε
T
k−1H

−T
k−1

Qe
k−1 = Pe

k−1 − Fk−2P
a
k−2F

T
k−2

Re
k−1 = εk−1ε

T
k−1 − Hk−1P

f
k−1H

T
k−1

Qk = Qk−1 + (Qe
k−1 − Qk−1)/τ

Rk = Rk−1 + (Re
k−1 − Rk−1)/τ
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How does this compare to inflation?

I We extend Kalman’s equations to estimate Q and R

I Estimates converge for linear models with Gaussian noise

I When applied to nonlinear, non-Gaussian problems

I We interpret Q as an additive inflation

I Q can have complex structure, possibly more effective than
multiplicative inflation?

I Downside: many more parameters than multiplicative inflation

I Somewhat less ad hoc than other inflation techniques?
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Observability and Parameterization of Q

Recall:

Pe
k−1 = F−1

k−1H
−1
k εkε

T
k−1H

−T
k−1 + Kk−1εk−1ε

T
k−1H

−T
k−1

Qe
k−1 = Pe

k−1 − Fk−2P
a
k−2F

T
k−2

Together these equations imply that:

HkFk−1Q
e
kH

T
k−1 = εkε

T
k−1 + HkFk−1Kk−1εk−1ε

T
k−1

−HkFk−1P
a
k−1F

T
k−1H

T
k−1

Set Ck equal to the right hand side (we simply compute Ck).
Parameterize Qe

k =
∑s

i=1 qi Q̂i where qi are scalar parameters and

Q̂i are ‘shape’ matrices.
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Observability and Parameterization of Q

We now need to solve:

Ck =
s∑

i=1

qiHkFk−1Q̂iH
T
k−1

We vectorize the equation as

vec(Ck) =
s∑

i=1

qivec(HkFk−1Q̂iH
T
k−1) = Ak [q1, ..., qs ]T

where Ak is an m2-by-l matrix where the i-th row is given by
vec(HkFk−1Q̂iH

T
k−1).

We can the solve for the parameters [q1, ..., qs ]T by least squares.
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Adaptive Filter: Application to Lorenz-96

I We will apply the adaptive EnKF to the 40-dimensional
Lorenz96 model integrated over a time step ∆t = 0.05

dx i

dt
= −x i−2x i−1 + x i−1x i+1 − x i + F

I We augment the model with Gaussian white noise

xk = f (xk−1) + ωk ωk = N (0,Q)

yk = h(xk) + νk νk = N (0,R)

I We will consider full and sparse observations

I The Adaptive EnKF uses F = 8

I We will consider model error where the true F i = N (8, 16)
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Recovering Q and R , Full Observability

True Covariance Initial Guess Final Estimate Difference
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RMSE shown for the initial guess covariances (red) the true Q and
R (black) and the adaptive filter (blue)
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Recovering Q and R , Sparse Observability

Observing 10 sites results in divergence with the true Q and R
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RMSE shown for the initial guess covariances (red) the true Q and
R (black) and the adaptive filter (blue)
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Compensating for Model Error

The adaptive filter compensates for errors in the forcing F i
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Integration with the LETKF

Simply find a local Q and R for each region
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