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The Curse of Dimensionality

Too Much Space, Too Little Data

I How many points do we need to be 95% confident we have a
hole of radius r ≤ .9?
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Number of points needed vs. Dimension: N ∼= 1.1n

I Volume of n-ball: Vn(r) = πn/2

Γ(n/2+1) r
n

I Probability of a uniform random point having r < 0.9 is the
volume ratio

I Percent of volume with r < 0.9 is Vn(0.9)/Vn(1) = 0.9n

I Probability of N points randomly falling in the outer shell:
P(r1, ..., rN ∈ [0.9, 1]) = (1− 0.9n)N

I We are 95% certain there is a hole if (1− 0.9n)N < 0.05

I We need N > log(0.05)
log(1−0.9n) ≈

3
0.9n ∝ 1.1n
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Number of points needed vs. Dimension: N ∼= 1.1n
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Dimensionality Reduction Goals

I Find new coordinates in Lower Dimensional Space

I Preserve Desired Features of Data:
I Variances and Distances
I Topology
I Geometry

I Minimize Reconstruction Error
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Dimensionality Reduction Goals

I Reduce redundancy in the data

I In general: 0 = f (x1, x2, ..., xn) is redundant

I More simple: x1 = f (x2, ..., xn)

I Even simpler: x1 = a2x2 + a3x3 + · · ·+ anxn + c

I How can we detected redundant variables?

I Simple method: Covariance detects linear redundancy
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Covariance

I Let {x(i)}Ni=1 ⊂ Rm be data points

I Let X by an m × N matrix with x(i) as the i-th column

I So Xji = x(i)j is the j-th variable of the i-th data point

I Let µj = 1
N

∑N
i=1 Xji be the mean

I The covariance of the j-th and k-th variables is

Sjk ≡
1

N

N∑
i=1

(Xji − µj)(Xki − µk)

I If we redefine X by subtracting µ from each column:

Sjk =
1

N
(XX>)jk
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Covariance

I When Sjk = 0 the j-th and k-th variables are uncorrelated

I When S is diagonal the data are uncorrelated

I Warning: Uncorrelated does not imply independent:

Tyrus Berry George Mason University The Quest for Variance : PCA, MDS and ISOMAP



Dimensionality Reduction
Principal Component Analysis (PCA)

Multi-Dimensional Scaling (MDS)
Nonlinear Dimensionality Reduction

Covariance

I When Sjk = 0 the j-th and k-th variables are uncorrelated

I When S = 1
NXX

> is diagonal the data are uncorrelated

I If the data is uncorrelated and Sjj 6= 0 there are no linear
redundancies:

I A linear redundancy says a1x1 + · · ·+ anxn = 0

I In terms of X this says that ~a>X = a1X1i + · · ·+ anXni = 0

I This implies ~a>XX>~a = 0 and ~a>S~a = 0

I Since S is diagonal we have 0 = ~a>S~a =
∑

j Sjja
2
j

I Since Sjj > 0 we must have aj = 0.
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PCA model and intuition
PCA Theory

Linear Model

PCA assumes a Linear Model:

I Underlying Variables x ∈ Rm are mean zero, uncorrelated

I Observed Variables y ∈ Rn are given by y = Ax

I Assume n > m but Rank(A) = m is unknown.
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PCA model and intuition
PCA Theory

PCA Schematic

Underlying Variables (x) Observed Variables (y = Ax)
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PCA model and intuition
PCA Theory

PCA is based on Linear Correlation

I Let X by an m × N matrix with x(i) as the i-th column

I Let Y = AX be the n × N matrix with y(i) as the i-th
column

I We are only given Y , these are observed data points

I Since the coordinates of X are uncorrelated, 1
NXX

> = S
where S is diagonal with

Sjj = var(xj) ≈
1

N

∑
i

X 2
ji

I Thus, 1
NYY

> = 1
NAXX

>A> = ASA>
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PCA model and intuition
PCA Theory

PCA assumes latent variables are uncorrelated

I We can compute: 1
NYY

> = ASA>

I Note that 1
NYY

> is symmetric and positive semi-definite

I So it has an eigen-decomposition 1
NYY

> = UΛU>

1. PCA: Assume that A is orthogonal, so that A = U and S = Λ.

I We can recover X by computing U>Y = U>AX

I The entries of Λ tell us the variance of the coordinates of x .
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PCA model and intuition
PCA Theory

PCA Algorithm

I Inputs: Observed data matrix Y and number of PCA modes k

I Output: Recovered intrinsic variables X and reconstructed Ỹ

I Step 1: Compute the mean µj = 1
N

∑N
i=1 Yji

I Step 2: Center the data: Subtract µ from each column of Y

I Step 3: Compute the singular value decomposition (SVD) of
Y : Y = USV> (note: YY> = US2U>)

I Step 4: Select the top k singular vectors U = U(:, 1 : k)

I Step 5: Project onto the principal components X = U>Y

I Step 6: Reconstruct Ỹ = UX + µ (add µ to each column)
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PCA model and intuition
PCA Theory

Linear Model Example: Noise Reduction

I PCA projects onto the largest linear component(s):

(Loading Video...)
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PCA model and intuition
PCA Theory

Nonlinear Model Example: Noise Reduction

I PCA can only make linear projections:

(Loading Video...)
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Gram matrices

I Let G be an N × N symmetric positive semi-definite matrix

I Then G = VΛMDSV
> with m positive eigenvalues

I Let X = Im×NΛ
1/2
MDSV

> so X is m × N

I Let x(i) ∈ Rm be the i-th column of X

I Notice that Gij = (X>X )ij =
∑m

l=1 XliXlj = x(i) · x(j)

I We say that G is the Gram matrix of a data set {x(i)} if the
entries of G are the pairwise inner products of the data points

Theorem: For any symmetric positive semi-definite N × N matrix,
there exists an uncorrelated data set {x(i)}Ni=1 ⊂ Rm where
m = rank(G ) such that G is the Gram matrix of {x(i)}. We call x
the coordinates of G , notice that XX> is diagonal.
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MDS preserves inner products

I Same context as PCA: Y = AX

I Instead of correlations, compute the Gram matrix G = Y>Y

I If A is orthogonal, the G = Y>Y = X>A>AX = X>X

I Compute the eigen-decompositon of G = VΛMDSV
>

I Dimensionality Reduction: Set X̃ = Ip×NΛ
1/2
MDSV

>

I X̃ are the p-dimensional coordinates with the closest Gram
matrix to X , minimizes the residual R (Frobenius norm):

G = X>X = X̃>X̃ +
N∑

j=p+1

(λMDS)jv(j)v(j)> = G̃ + R

Tyrus Berry George Mason University The Quest for Variance : PCA, MDS and ISOMAP



Dimensionality Reduction
Principal Component Analysis (PCA)

Multi-Dimensional Scaling (MDS)
Nonlinear Dimensionality Reduction

Gram matrices
MDS Theory
Double Centering

Equivalence of MDS and PCA

I PCA: 1
NYY

> = UΛPCAU
> set XPCA = Ip×NU

>Y

I MDS: Y>Y = VΛMDSV
>, set XMDS = Ip×NΛ

1/2
MDSV

>

I Singular value decomposition: Y = USV>, S = Λ
1/2
MDS

XPCA = Ip×NU
>Y = Ip×NU

>UΛ
1/2
MDSV

> = XMDS

I PCA/MDS preserve variance (maximal variance projection),
inner products, and Euclidean distances:

||x(i)−x(j)||2 = x(i)·x(i)+x(j)·x(j)−2x(i)·x(j) = Gii+Gjj−2Gij
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Why do we need MDS?

I PCA needs the coordinates of Y to compute correlations

I MDS appears to need the coordinates of Y to compute the
Gram matrix

I Actually, Gram matrix can be reconstructed from pairwise
distances

I This means we can start with a collection of distances

I These distances don’t need to be Euclidean!
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Double Centering

I Double centering recovers the Gram matrix from the matrix of
pairwise distances

I Let Dij = ||x(i)− x(j)||2 = x(i) · x(i) + x(j) · x(j)− 2x(i) · x(j)

I Assume 1
N

∑
i x(i) = 0 and 1

N

∑
i x(i) · x(i) = σ2

I Then 1
N

∑
i Dij = σ2 + x(j) · x(j) and 1

N2

∑
i ,j Di ,j = 2σ2 so

−1

2

Dij −
1

N

∑
i

Dij −
1

N

∑
j

Dij +
1

N2

∑
i ,j

Dij

 = x(i)·x(j) = Gij

Double Centering: Let 1 be the N × N matrix of all 1’s, then

G = −1

2

(
D − D1/N − 1D/N + 1D1/N2

)
= −1

2
(Id−1)D(Id−1)
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The Geometric Prior

I Assume data are sampled from a compact Riemannian
manifold embedded in Rn

I Example: Generate 1000 data points (xi , yi )
> on a unit circle

in R2 let X be the 2× 1000 matrix containing this data.

I Embed the circle into R10 using a random orthogonal matrix
U (U>U = I ) which is 10× 2 so that Y = UX is 10× 1000.

I Also consider the more complex embedding Y = [X (UX )3]
(where U is 8× 2 and the cube is entrywise).

I Add some 10-dimensional Gaussian noise to Y .
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The Geometric Prior
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PCA for Nonlinear Dimensionality Reduction

I Assume data lies on a d-dimensional manifold M embedded
in Rn with n >> d .

I Sard’s Lemma: A randomly chosen linear projection from Rn

to R2d+1, will preserve the topology of M.

I PCA is Topology preserving

I Problem: What about the geometry of M?

I Answer: PCA attempts to preserve Euclidean distances, long
Euclidean distances do not respect the nonlinear structure,
but short distances do (locally approximately linear).
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PCA/MDS/Distance MDS for Nonlinear Data
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Modified Distance MDS for Nonlinear Dimensionality
Reduction

I PCA is Topology preserving

I Problem: What about the geometry of M?

I Answer: PCA attempts to preserve Euclidean distances, long
Euclidean distances do not respect the nonlinear structure,
but short distances do (locally approximately linear).

I Distance MDS lets us play with the distances!

I Simple Idea: Very short distance = noise. Very long distance
= Not meaningful. Weight distances by e−(D−µ)2/σ.
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ISOMAP

I PCA is Topology preserving

I Problem: What about the geometry of M?

I Answer: ISOMAP replaces Euclidean distances with Graph
Distances (shortest path in a kNN graph) which approximate
Geodesic Distances.

I Geometry Preserving.

I Not very robust to noise.
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Kernel PCA

I Forget the distances altogether!

I Define a kernel, such as J(x , y) = e−||x−y ||
2/ε

I Evaluate kernel on all pairs of data points Jij = J(xi , xj).

I If matrix J is symmetric and positive definite it defines an
embedding!

I Eigenvectors of matrix J give new coordinates for the data
(MDS).

I We can interpret the kernel J(x , y) as inner product

J(x , y) = 〈φ(x), φ(y)〉Rm
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