The Quest for Variance : PCA, MDS and ISOMAP

Tyrus Berry George Mason University

June 26, 2017

Tyrus Berry George Mason University The Quest for Variance : PCA, MDS and ISOMAP

Dimensionality Reduction

Principal Component Analysis (PCA) PCA model and intuition PCA Theory

Multi-Dimensional Scaling (MDS)

Gram matrices MDS Theory Double Centering

Nonlinear Dimensionality Reduction

PCA for Nonlinear Data MDS Distance Preservation Preview: Kernel PCA

- 4 同 ト 4 ヨ ト 4 ヨ ト

The Curse of Dimensionality

Too Much Space, Too Little Data

► How many points do we need to be 95% confident we have a hole of radius r ≤ .9?

Tyrus Berry George Mason University

The Quest for Variance : PCA, MDS and ISOMAP

Number of points needed vs. Dimension: $N \cong 1.1^n$

- Volume of *n*-ball: $V_n(r) = \frac{\pi^{n/2}}{\Gamma(n/2+1)}r^n$
- Probability of a uniform random point having r < 0.9 is the volume ratio
- Percent of volume with r < 0.9 is $V_n(0.9)/V_n(1) = 0.9^n$
- ▶ Probability of *N* points randomly falling in the outer shell: $P(r_1, ..., r_N \in [0.9, 1]) = (1 - 0.9^n)^N$
- We are 95% certain there is a hole if $(1 0.9^n)^N < 0.05$

• We need
$$N > rac{\log(0.05)}{\log(1-0.9^n)} pprox rac{3}{0.9^n} \propto 1.1^n$$

Number of points needed vs. Dimension: $N \cong 1.1^n$

イロト イヨト イヨト イヨト

Dimensionality Reduction Goals

- Find new coordinates in Lower Dimensional Space
- Preserve Desired Features of Data:
 - Variances and Distances
 - Topology
 - Geometry
- Minimize Reconstruction Error

- 4 同 6 4 日 6 4 日 6

Dimensionality Reduction Goals

- Reduce redundancy in the data
- In general: $0 = f(x_1, x_2, ..., x_n)$ is redundant

• More simple:
$$x_1 = f(x_2, ..., x_n)$$

- Even simpler: $x_1 = a_2x_2 + a_3x_3 + \cdots + a_nx_n + c$
- How can we detected redundant variables?
- Simple method: Covariance detects linear redundancy

Covariance

- Let $\{x(i)\}_{i=1}^N \subset \mathbb{R}^m$ be data points
- Let X by an $m \times N$ matrix with x(i) as the *i*-th column
- ► So $X_{ji} = x(i)_j$ is the *j*-th variable of the *i*-th data point
- Let $\mu_j = \frac{1}{N} \sum_{i=1}^{N} X_{ji}$ be the mean
- The covariance of the *j*-th and *k*-th variables is

$$S_{jk} \equiv rac{1}{N}\sum_{i=1}^N (X_{ji}-\mu_j)(X_{ki}-\mu_k)$$

• If we redefine X by subtracting μ from each column:

$$S_{jk} = \frac{1}{N} (XX^{\top})_{jk}$$

Covariance

- When $S_{jk} = 0$ the *j*-th and *k*-th variables are uncorrelated
- When S is diagonal the data are uncorrelated
- Warning: Uncorrelated does not imply independent:

Tyrus Berry George Mason University TI

The Quest for Variance : PCA, MDS and ISOMAP

Covariance

- When $S_{jk} = 0$ the *j*-th and *k*-th variables are uncorrelated
- When $S = \frac{1}{N}XX^{\top}$ is diagonal the data are uncorrelated
- ► If the data is uncorrelated and S_{jj} ≠ 0 there are no linear redundancies:
 - A linear redundancy says $a_1x_1 + \cdots + a_nx_n = 0$
 - In terms of X this says that $\vec{a}^{\top}X = a_1X_{1i} + \cdots + a_nX_{ni} = 0$
 - This implies $\vec{a}^{\top}XX^{\top}\vec{a} = 0$ and $\vec{a}^{\top}S\vec{a} = 0$
 - Since S is diagonal we have $0 = \vec{a}^{\top} S \vec{a} = \sum_{i} S_{jj} a_{i}^{2}$
 - Since $S_{jj} > 0$ we must have $a_j = 0$.

PCA model and intuition PCA Theory

Linear Model

PCA assumes a Linear Model:

- Underlying Variables $x \in \mathbb{R}^m$ are mean zero, uncorrelated
- Observed Variables $y \in \mathbb{R}^n$ are given by y = Ax
- Assume n > m but Rank(A) = m is unknown.

PCA model and intuition PCA Theory

PCA Schematic

Tyrus Berry George Mason University The Quest for Variance : PCA, MDS and ISOMAP

PCA model and intuition PCA Theory

PCA is based on Linear Correlation

- Let X by an $m \times N$ matrix with x(i) as the *i*-th column
- Let Y = AX be the n × N matrix with y(i) as the i-th column
- ▶ We are only given *Y*, these are *observed* data points
- Since the coordinates of X are uncorrelated, ¹/_NXX[⊤] = S where S is diagonal with

$$S_{jj} = \operatorname{var}(x_j) pprox rac{1}{N} \sum_i X_{ji}^2$$

• Thus, $\frac{1}{N}YY^{\top} = \frac{1}{N}AXX^{\top}A^{\top} = ASA^{\top}$

PCA model and intuition PCA Theory

PCA assumes latent variables are uncorrelated

- We can compute: $\frac{1}{N}YY^{\top} = ASA^{\top}$
- Note that $\frac{1}{N}YY^{\top}$ is symmetric and positive semi-definite
- So it has an eigen-decomposition $\frac{1}{N}YY^{\top} = U\Lambda U^{\top}$
- 1. PCA: Assume that A is orthogonal, so that A = U and $S = \Lambda$.
 - We can recover X by computing $U^{\top}Y = U^{\top}AX$
 - The entries of Λ tell us the variance of the coordinates of x.

PCA model and intuition PCA Theory

PCA assumes latent variables are uncorrelated

- We can compute: $\frac{1}{N}YY^{\top} = ASA^{\top}$
- Note that $\frac{1}{N}YY^{\top}$ is symmetric and positive semi-definite
- So it has an eigen-decomposition $\frac{1}{N}YY^{\top} = U\Lambda U^{\top}$
- 1. PCA: Assume that A is orthogonal, so that A = U and $S = \Lambda$.
 - We can recover X by computing $U^{\top}Y = U^{\top}AX$
 - The entries of Λ tell us the variance of the coordinates of x.

PCA model and intuition PCA Theory

PCA Algorithm

- Inputs: Observed data matrix Y and number of PCA modes k
- Output: Recovered intrinsic variables X and reconstructed \tilde{Y}
- Step 1: Compute the mean $\mu_j = \frac{1}{N} \sum_{i=1}^{N} Y_{ji}$
- Step 2: Center the data: Subtract μ from each column of Y
- Step 3: Compute the singular value decomposition (SVD) of Y: Y = USV[⊤] (note: YY[⊤] = US²U[⊤])
- Step 4: Select the top k singular vectors U = U(:, 1:k)
- Step 5: Project onto the principal components $X = U^{\top}Y$
- Step 6: Reconstruct $\tilde{Y} = UX + \mu$ (add μ to each column)

イロト イポト イラト イラト 一日

PCA model and intuition PCA Theory

Linear Model Example: Noise Reduction

PCA projects onto the largest linear component(s):

(Loading Video...)

イロン イヨン イヨン イヨン

PCA model and intuition PCA Theory

Nonlinear Model Example: Noise Reduction

PCA can only make linear projections:

(Loading Video...)

イロン イヨン イヨン イヨン

Gram matrices MDS Theory Double Centering

Gram matrices

- Let G be an $N \times N$ symmetric positive semi-definite matrix
- Then $G = V \Lambda_{MDS} V^{\top}$ with *m* positive eigenvalues
- Let $X = I_{m imes N} \Lambda_{\text{MDS}}^{1/2} V^{ op}$ so X is m imes N
- Let $x(i) \in \mathbb{R}^m$ be the *i*-th column of X
- Notice that $G_{ij} = (X^{\top}X)_{ij} = \sum_{l=1}^{m} X_{li}X_{lj} = x(i) \cdot x(j)$
- ▶ We say that G is the Gram matrix of a data set {x(i)} if the entries of G are the pairwise inner products of the data points

Theorem: For any symmetric positive semi-definite $N \times N$ matrix, there exists an uncorrelated data set $\{x(i)\}_{i=1}^{N} \subset \mathbb{R}^{m}$ where $m = \operatorname{rank}(G)$ such that G is the Gram matrix of $\{x(i)\}$. We call x the coordinates of G, notice that XX^{\top} is diagonal.

イロン イ部ン イヨン イヨン 三日

Gram matrices MDS Theory Double Centering

MDS preserves inner products

- Same context as PCA: Y = AX
- Instead of correlations, compute the Gram matrix $G = Y^{\top}Y$
- If A is orthogonal, the $G = Y^{\top}Y = X^{\top}A^{\top}AX = X^{\top}X$
- Compute the eigen-decompositon of $G = V \Lambda_{MDS} V^{\top}$
- Dimensionality Reduction: Set $\tilde{X} = I_{p \times N} \Lambda_{\text{MDS}}^{1/2} V^{\top}$
- X̃ are the *p*-dimensional coordinates with the closest Gram matrix to X, minimizes the residual R (Frobenius norm):

$$G = X^{\top}X = \tilde{X}^{\top}\tilde{X} + \sum_{j=p+1}^{N} (\lambda_{\text{MDS}})_j v(j) v(j)^{\top} = \tilde{G} + R$$

Gram matrices MDS Theory Double Centering

Equivalence of MDS and PCA

► PCA:
$$\frac{1}{N}YY^{\top} = U\Lambda_{PCA}U^{\top}$$
 set $X_{PCA} = I_{p \times N}U^{\top}Y$

• MDS:
$$Y^{\top}Y = V\Lambda_{\text{MDS}}V^{\top}$$
, set $X_{\text{MDS}} = I_{\rho \times N}\Lambda_{\text{MDS}}^{1/2}V^{\top}$

► Singular value decomposition: $Y = USV^{\top}$, $S = \Lambda_{MDS}^{1/2}$

$$X_{\mathsf{PCA}} = I_{p \times N} U^{\top} Y = I_{p \times N} U^{\top} U \Lambda_{\mathsf{MDS}}^{1/2} V^{\top} = X_{\mathsf{MDS}}$$

 PCA/MDS preserve variance (maximal variance projection), inner products, and Euclidean distances:

$$||x(i)-x(j)||^{2} = x(i) \cdot x(i) + x(j) \cdot x(j) - 2x(i) \cdot x(j) = G_{ii} + G_{jj} - 2G_{ij}$$

Gram matrices MDS Theory Double Centering

Why do we need MDS?

- PCA needs the coordinates of Y to compute correlations
- MDS appears to need the coordinates of Y to compute the Gram matrix
- Actually, Gram matrix can be reconstructed from pairwise distances
- This means we can start with a collection of distances
- These distances don't need to be Euclidean!

Gram matrices MDS Theory Double Centering

Double Centering

 Double centering recovers the Gram matrix from the matrix of pairwise distances

• Let
$$D_{ij} = ||x(i) - x(j)||^2 = x(i) \cdot x(i) + x(j) \cdot x(j) - 2x(i) \cdot x(j)$$

• Assume $\frac{1}{2} \sum x(i) = 0$ and $\frac{1}{2} \sum x(i) - x(i) = \sigma^2$

• Assume
$$\frac{1}{N}\sum_{i} x(i) = 0$$
 and $\frac{1}{N}\sum_{i} x(i) \cdot x(i) = 0$

• Then
$$\frac{1}{N}\sum_{i} D_{ij} = \sigma^2 + x(j) \cdot x(j)$$
 and $\frac{1}{N^2}\sum_{i,j} D_{i,j} = 2\sigma^2$ so

$$-\frac{1}{2}\left(D_{ij} - \frac{1}{N}\sum_{i}D_{ij} - \frac{1}{N}\sum_{j}D_{ij} + \frac{1}{N^2}\sum_{i,j}D_{ij}\right) = x(i)\cdot x(j) = G_{ij}$$

Double Centering: Let 1 be the $N \times N$ matrix of all 1's, then

$$G = -\frac{1}{2} \left(D - D\mathbb{1}/N - \mathbb{1}D/N + \mathbb{1}D\mathbb{1}/N^2 \right) = -\frac{1}{2} (\mathsf{Id} - \mathbb{1})D(\mathsf{Id} - \mathbb{1})$$

イロト イヨト イヨト イヨト

PCA for Nonlinear Data MDS Distance Preservation Preview: Kernel PCA

The Geometric Prior

- ► Assume data are sampled from a compact Riemannian manifold embedded in ℝⁿ
- Example: Generate 1000 data points (x_i, y_i)[⊤] on a unit circle in ℝ² let X be the 2 × 1000 matrix containing this data.
- Embed the circle into ℝ¹⁰ using a random orthogonal matrix U (U^TU = I) which is 10 × 2 so that Y = UX is 10 × 1000.
- ► Also consider the more complex embedding Y = [X (UX)³] (where U is 8 × 2 and the cube is entrywise).
- Add some 10-dimensional Gaussian noise to Y.

소리가 소문가 소문가 소문가

PCA for Nonlinear Data MDS Distance Preservation Preview: Kernel PCA

The Geometric Prior

イロン イヨン イヨン イヨン

Э

PCA for Nonlinear Data MDS Distance Preservation Preview: Kernel PCA

PCA for Nonlinear Dimensionality Reduction

- ► Assume data lies on a *d*-dimensional manifold *M* embedded in ℝⁿ with n >> d.
- Sard's Lemma: A randomly chosen linear projection from ℝⁿ to ℝ^{2d+1}, will preserve the topology of *M*.
- PCA is Topology preserving
- ▶ Problem: What about the geometry of *M*?
- Answer: PCA attempts to preserve Euclidean distances, long Euclidean distances do not respect the nonlinear structure, but short distances do (locally approximately linear).

PCA for Nonlinear Data MDS Distance Preservation Preview: Kernel PCA

PCA/MDS/Distance MDS for Nonlinear Data

Tyrus Berry George Mason University The Quest for Variance : PCA, MDS and ISOMAP

・ロト ・日本 ・モート ・モート

PCA for Nonlinear Data MDS Distance Preservation Preview: Kernel PCA

Modified Distance MDS for Nonlinear Dimensionality Reduction

- PCA is Topology preserving
- Problem: What about the geometry of *M*?
- Answer: PCA attempts to preserve Euclidean distances, long Euclidean distances do not respect the nonlinear structure, but short distances do (locally approximately linear).
- Distance MDS lets us play with the distances!
- ► Simple Idea: Very short distance = noise. Very long distance = Not meaningful. Weight distances by $e^{-(D-\mu)^2/\sigma}$.

PCA for Nonlinear Data MDS Distance Preservation Preview: Kernel PCA

ISOMAP

- PCA is Topology preserving
- Problem: What about the geometry of *M*?
- Answer: ISOMAP replaces Euclidean distances with Graph Distances (shortest path in a kNN graph) which approximate Geodesic Distances.
- Geometry Preserving.
- Not very robust to noise.

PCA for Nonlinear Data MDS Distance Preservation Preview: Kernel PCA

Kernel PCA

- Forget the distances altogether!
- Define a kernel, such as $J(x, y) = e^{-||x-y||^2/\epsilon}$
- Evaluate kernel on all pairs of data points $J_{ij} = J(x_i, x_j)$.
- If matrix J is symmetric and positive definite it defines an embedding!
- Eigenvectors of matrix J give new coordinates for the data (MDS).
- We can interpret the kernel J(x, y) as inner product

$$J(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathbb{R}^m}$$