The Quest for Variance : PCA, MDS and ISOMAP

Tyrus Berry
George Mason University

June 26, 2017

Dimensionality Reduction

Principal Component Analysis (PCA)
PCA model and intuition
PCA Theory
Multi-Dimensional Scaling (MDS)
Gram matrices
MDS Theory
Double Centering
Nonlinear Dimensionality Reduction
PCA for Nonlinear Data
MDS Distance Preservation
Preview: Kernel PCA

The Curse of Dimensionality

Too Much Space, Too Little Data

- How many points do we need to be 95% confident we have a hole of radius $r \leq .9$?

Number of points needed vs. Dimension: $N \cong 1.1^{n}$

- Volume of n-ball: $V_{n}(r)=\frac{\pi^{n / 2}}{\Gamma(n / 2+1)} r^{n}$
- Probability of a uniform random point having $r<0.9$ is the volume ratio
- Percent of volume with $r<0.9$ is $V_{n}(0.9) / V_{n}(1)=0.9^{n}$
- Probability of N points randomly falling in the outer shell: $P\left(r_{1}, \ldots, r_{N} \in[0.9,1]\right)=\left(1-0.9^{n}\right)^{N}$
- We are 95% certain there is a hole if $\left(1-0.9^{n}\right)^{N}<0.05$
- We need $N>\frac{\log (0.05)}{\log \left(1-0.9^{n}\right)} \approx \frac{3}{0.9^{n}} \propto 1.1^{n}$

Number of points needed vs. Dimension: $N \cong 1.1^{n}$

Dimensionality Reduction Goals

- Find new coordinates in Lower Dimensional Space
- Preserve Desired Features of Data:
- Variances and Distances
- Topology
- Geometry
- Minimize Reconstruction Error

Dimensionality Reduction Goals

- Reduce redundancy in the data
- In general: $0=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is redundant
- More simple: $x_{1}=f\left(x_{2}, \ldots, x_{n}\right)$
- Even simpler: $x_{1}=a_{2} x_{2}+a_{3} x_{3}+\cdots+a_{n} x_{n}+c$
- How can we detected redundant variables?
- Simple method: Covariance detects linear redundancy

Covariance

- Let $\{x(i)\}_{i=1}^{N} \subset \mathbb{R}^{m}$ be data points
- Let X by an $m \times N$ matrix with $x(i)$ as the i-th column
- So $X_{j i}=x(i)_{j}$ is the j-th variable of the i-th data point
- Let $\mu_{j}=\frac{1}{N} \sum_{i=1}^{N} X_{j i}$ be the mean
- The covariance of the j-th and k-th variables is

$$
S_{j k} \equiv \frac{1}{N} \sum_{i=1}^{N}\left(X_{j i}-\mu_{j}\right)\left(X_{k i}-\mu_{k}\right)
$$

- If we redefine X by subtracting μ from each column:

$$
S_{j k}=\frac{1}{N}\left(X X^{\top}\right)_{j k}
$$

Covariance

- When $S_{j k}=0$ the j-th and k-th variables are uncorrelated
- When S is diagonal the data are uncorrelated
- Warning: Uncorrelated does not imply independent:

1.0	0.8	0.4	0.0	-0.4	-0.8	-1.0
			$\text { , } \mathrm{k} \%$			
1.0	1.0	1.0		-1.0	-1.0	-1.0
	"	\ldots	\qquad	\cdots		
0.0	0.0	0.0	0.0	0.0	0.0	0.0
						\%

Covariance

- When $S_{j k}=0$ the j-th and k-th variables are uncorrelated
- When $S=\frac{1}{N} X X^{\top}$ is diagonal the data are uncorrelated
- If the data is uncorrelated and $S_{j j} \neq 0$ there are no linear redundancies:
- A linear redundancy says $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$
- In terms of X this says that $\vec{a}^{\top} X=a_{1} X_{1 i}+\cdots+a_{n} X_{n i}=0$
- This implies $\vec{a}^{\top} X X^{\top} \vec{a}=0$ and $\vec{a}^{\top} S \vec{a}=0$
- Since S is diagonal we have $0=\vec{a}^{\top} S \vec{a}=\sum_{j} S_{j j} a_{j}^{2}$
- Since $S_{j j}>0$ we must have $a_{j}=0$.

Linear Model

PCA assumes a Linear Model:

- Underlying Variables $x \in \mathbb{R}^{m}$ are mean zero, uncorrelated
- Observed Variables $y \in \mathbb{R}^{n}$ are given by $y=A x$
- Assume $n>m$ but $\operatorname{Rank}(A)=m$ is unknown.

PCA Schematic

PCA is based on Linear Correlation

- Let X by an $m \times N$ matrix with $x(i)$ as the i-th column
- Let $Y=A X$ be the $n \times N$ matrix with $y(i)$ as the i-th column
- We are only given Y, these are observed data points
- Since the coordinates of X are uncorrelated, $\frac{1}{N} X X^{\top}=S$ where S is diagonal with

$$
S_{j j}=\operatorname{var}\left(x_{j}\right) \approx \frac{1}{N} \sum_{i} X_{j i}^{2}
$$

- Thus, $\frac{1}{N} Y Y^{\top}=\frac{1}{N} A X X^{\top} A^{\top}=A S A^{\top}$

PCA assumes latent variables are uncorrelated

- We can compute: $\frac{1}{N} Y Y^{\top}=A S A^{\top}$
- Note that $\frac{1}{N} Y Y^{\top}$ is symmetric and positive semi-definite
- So it has an eigen-decomposition $\frac{1}{N} Y Y^{\top}=U \wedge U^{\top}$

1. PCA: Assume that A is orthogonal, so that $A=U$ and $S=\Lambda$.

- We can recover X by computing $U^{\top} Y=U^{\top} A X$
- The entries of Λ tell us the variance of the coordinates of x.

PCA assumes latent variables are uncorrelated

- We can compute: $\frac{1}{N} Y Y^{\top}=A S A^{\top}$
- Note that $\frac{1}{N} Y Y^{\top}$ is symmetric and positive semi-definite
- So it has an eigen-decomposition $\frac{1}{N} Y Y^{\top}=U \wedge U^{\top}$

1. PCA: Assume that A is orthogonal, so that $A=U$ and $S=\Lambda$.

- We can recover X by computing $U^{\top} Y=U^{\top} A X$
- The entries of Λ tell us the variance of the coordinates of x.

PCA Algorithm

- Inputs: Observed data matrix Y and number of PCA modes k
- Output: Recovered intrinsic variables X and reconstructed \tilde{Y}
- Step 1: Compute the mean $\mu_{j}=\frac{1}{N} \sum_{i=1}^{N} Y_{j i}$
- Step 2: Center the data: Subtract μ from each column of Y
- Step 3: Compute the singular value decomposition (SVD) of $Y: Y=U S V^{\top}$ (note: $Y Y^{\top}=U S^{2} U^{\top}$)
- Step 4: Select the top k singular vectors $U=U(:, 1: k)$
- Step 5: Project onto the principal components $X=U^{\top} Y$
- Step 6: Reconstruct $\tilde{Y}=U X+\mu$ (add μ to each column)

Linear Model Example: Noise Reduction

- PCA projects onto the largest linear component(s):

Nonlinear Model Example: Noise Reduction

- PCA can only make linear projections:

Gram matrices

- Let G be an $N \times N$ symmetric positive semi-definite matrix
- Then $G=V \Lambda_{\text {MDS }} V^{\top}$ with m positive eigenvalues
- Let $X=I_{m \times N} \Lambda_{\text {MDS }}^{1 / 2} V^{\top}$ so X is $m \times N$
- Let $x(i) \in \mathbb{R}^{m}$ be the i-th column of X
- Notice that $G_{i j}=\left(X^{\top} X\right)_{i j}=\sum_{l=1}^{m} X_{l i} X_{l j}=x(i) \cdot x(j)$
- We say that G is the Gram matrix of a data set $\{x(i)\}$ if the entries of G are the pairwise inner products of the data points

Theorem: For any symmetric positive semi-definite $N \times N$ matrix, there exists an uncorrelated data set $\{x(i)\}_{i=1}^{N} \subset \mathbb{R}^{m}$ where $m=\operatorname{rank}(G)$ such that G is the Gram matrix of $\{x(i)\}$. We call x the coordinates of G, notice that $X X^{\top}$ is diagonal.

MDS preserves inner products

- Same context as PCA: $Y=A X$
- Instead of correlations, compute the Gram matrix $G=Y^{\top} Y$
- If A is orthogonal, the $G=Y^{\top} Y=X^{\top} A^{\top} A X=X^{\top} X$
- Compute the eigen-decompositon of $G=V \Lambda_{\text {MDS }} V^{\top}$
- Dimensionality Reduction: Set $\tilde{X}=I_{p \times N} \Lambda_{\text {MDS }}^{1 / 2} V^{\top}$
- \tilde{X} are the p-dimensional coordinates with the closest Gram matrix to X, minimizes the residual R (Frobenius norm):

$$
G=X^{\top} X=\tilde{X}^{\top} \tilde{X}+\sum_{j=p+1}^{N}\left(\lambda_{\mathrm{MDS}}\right)_{j} v(j) v(j)^{\top}=\tilde{G}+R
$$

Equivalence of MDS and PCA

- PCA: $\frac{1}{N} Y Y^{\top}=U \Lambda_{\mathrm{PCA}} U^{\top}$ set $X_{\mathrm{PCA}}=I_{p \times N} U^{\top} Y$
- MDS: $Y^{\top} Y=V \Lambda_{\text {MDS }} V^{\top}$, set $X_{\mathrm{MDS}}=I_{p \times N} \Lambda_{\mathrm{MDS}}^{1 / 2} V^{\top}$
- Singular value decomposition: $Y=U S V^{\top}, S=\Lambda_{\text {MDS }}^{1 / 2}$

$$
X_{\mathrm{PCA}}=I_{p \times N} U^{\top} Y=I_{p \times N} U^{\top} U \Lambda_{\mathrm{MDS}}^{1 / 2} V^{\top}=X_{\mathrm{MDS}}
$$

- PCA/MDS preserve variance (maximal variance projection), inner products, and Euclidean distances:

$$
\|x(i)-x(j)\|^{2}=x(i) \cdot x(i)+x(j) \cdot x(j)-2 x(i) \cdot x(j)=G_{i i}+G_{j j}-2 G_{i j}
$$

Why do we need MDS?

- PCA needs the coordinates of Y to compute correlations
- MDS appears to need the coordinates of Y to compute the Gram matrix
- Actually, Gram matrix can be reconstructed from pairwise distances
- This means we can start with a collection of distances
- These distances don't need to be Euclidean!

Double Centering

- Double centering recovers the Gram matrix from the matrix of pairwise distances
- Let $D_{i j}=\|x(i)-x(j)\|^{2}=x(i) \cdot x(i)+x(j) \cdot x(j)-2 x(i) \cdot x(j)$
- Assume $\frac{1}{N} \sum_{i} x(i)=0$ and $\frac{1}{N} \sum_{i} x(i) \cdot x(i)=\sigma^{2}$
- Then $\frac{1}{N} \sum_{i} D_{i j}=\sigma^{2}+x(j) \cdot x(j)$ and $\frac{1}{N^{2}} \sum_{i, j} D_{i, j}=2 \sigma^{2}$ so

$$
-\frac{1}{2}\left(D_{i j}-\frac{1}{N} \sum_{i} D_{i j}-\frac{1}{N} \sum_{j} D_{i j}+\frac{1}{N^{2}} \sum_{i, j} D_{i j}\right)=x(i) \cdot x(j)=G_{i j}
$$

Double Centering: Let $\mathbb{1}$ be the $N \times N$ matrix of all 1's, then
$G=-\frac{1}{2}\left(D-D \mathbb{1} / N-\mathbb{1} D / N+\mathbb{1} D \mathbb{1} / N^{2}\right)=-\frac{1}{2}(\mathrm{ld}-\mathbb{1}) D(\mathrm{ld}-\mathbb{1})$

The Geometric Prior

- Assume data are sampled from a compact Riemannian manifold embedded in \mathbb{R}^{n}
- Example: Generate 1000 data points $\left(x_{i}, y_{i}\right)^{\top}$ on a unit circle in \mathbb{R}^{2} let X be the 2×1000 matrix containing this data.
- Embed the circle into \mathbb{R}^{10} using a random orthogonal matrix $U\left(U^{\top} U=I\right)$ which is 10×2 so that $Y=U X$ is 10×1000.
- Also consider the more complex embedding $Y=\left[X(U X)^{3}\right]$ (where U is 8×2 and the cube is entrywise).
- Add some 10-dimensional Gaussian noise to Y.

Dimensionality Reduction
Principal Component Analysis (PCA) Multi-Dimensional Scaling (MDS) Nonlinear Dimensionality Reduction

The Geometric Prior

PCA for Nonlinear Dimensionality Reduction

- Assume data lies on a d-dimensional manifold \mathcal{M} embedded in \mathbb{R}^{n} with $n \gg d$.
- Sard's Lemma: A randomly chosen linear projection from \mathbb{R}^{n} to $\mathbb{R}^{2 d+1}$, will preserve the topology of \mathcal{M}.
- PCA is Topology preserving
- Problem: What about the geometry of \mathcal{M} ?
- Answer: PCA attempts to preserve Euclidean distances, long Euclidean distances do not respect the nonlinear structure, but short distances do (locally approximately linear).

Dimensionality Reduction

PCA for Nonlinear Data MDS Distance Preservation Preview: Kernel PCA

PCA/MDS/Distance MDS for Nonlinear Data

Modified Distance MDS for Nonlinear Dimensionality Reduction

- PCA is Topology preserving
- Problem: What about the geometry of \mathcal{M} ?
- Answer: PCA attempts to preserve Euclidean distances, long Euclidean distances do not respect the nonlinear structure, but short distances do (locally approximately linear).
- Distance MDS lets us play with the distances!
- Simple Idea: Very short distance $=$ noise. Very long distance $=$ Not meaningful. Weight distances by $e^{-(D-\mu)^{2} / \sigma}$.

ISOMAP

- PCA is Topology preserving
- Problem: What about the geometry of \mathcal{M} ?
- Answer: ISOMAP replaces Euclidean distances with Graph Distances (shortest path in a kNN graph) which approximate Geodesic Distances.
- Geometry Preserving.
- Not very robust to noise.

Kernel PCA

- Forget the distances altogether!
- Define a kernel, such as $J(x, y)=e^{-\|x-y\|^{2} / \epsilon}$
- Evaluate kernel on all pairs of data points $J_{i j}=J\left(x_{i}, x_{j}\right)$.
- If matrix J is symmetric and positive definite it defines an embedding!
- Eigenvectors of matrix J give new coordinates for the data (MDS).
- We can interpret the kernel $J(x, y)$ as inner product

$$
J(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathbb{R}^{m}}
$$

