Model-free forecasting with applications to multi-sensor arrays

Tyrus Berry George Mason University

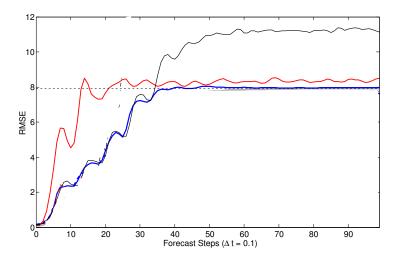
March 16, 2021

Joint work with John Harlim, PSU and Dimitris Giannakis, NYU Supported by NSF-DMS 1854204 and 1723175

•0000000

- ▶ Deterministic Forecasting, $x_{k+1} = F(x_k)$
- ► Regression problem: Learn F from data
- ▶ Iterative Methods: $x_{k+n} = \tilde{F}^n(x_k)$ where $\tilde{F} \approx F$
- ▶ Direct Methods: $x_{k+n} = \tilde{F}_n(x_k)$ where $\tilde{F}_n \approx F^n$

DIRECT VS. Iterative VS PROBABILISTIC



REGRESSION COMPARISON

► Local Linear Regression (*x_i* near *x*):

$$F(x) \approx F(x_i) + DF(x_i)(x - x_i)$$

► Kernel Regression (*h* is bump function):

$$F(x) \approx \sum_{j} c_{j} h(||x - x_{j}||_{A_{j}})$$

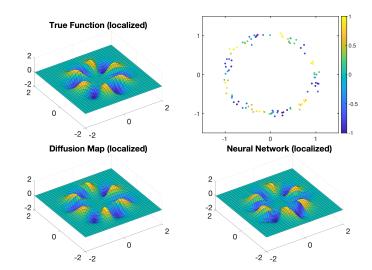
▶ Neural Network (h is sigmoid):

$$F(x) pprox \sum_{j} c_{j} h(a_{j}^{\top}(x - \tilde{x}_{j}))$$

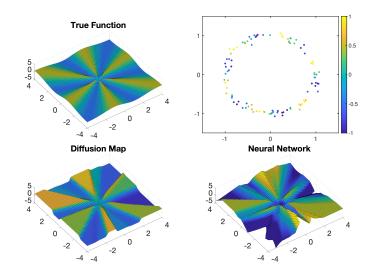
(where we write $b_i = a_i^{\top} \tilde{x}_i$)

- ► Deep Network: Composition of Neural Networks
- ► Reservoir Computer: Fix a_i, b_i , linear regression for c_i

00000000



NYSTRÖM VS. DEEP NET, $(r, \theta) \mapsto \sin(6\theta)$



Types of Forecasting: UQ

- ▶ Deterministic Forecasting, $x_{k+1} = F(x_k), x_0 \sim p_0$
- ▶ Uncertainty Quantification, $p_{k+1} = \mathcal{F}(p_k) = p_k \circ F$
- Can be considered a regression problem
- ► Option 1: Learn F, then apply UQ (MC, PC, etc.)
- ▶ Option 2: Learn F directly in a basis

$$A_{ij} = \langle \phi_i, \mathcal{F} \phi_j \rangle = \langle \phi_i, \phi_j \circ F \rangle \approx \frac{1}{N} \sum_{k=1}^N \phi_i(x_k) \phi_j(x_{k+1})$$

00000000

- ▶ Stochastic Forecasting, $x_{k+1} = F(x_k, \omega_k)$
- ► *Not* a regression problem
- ▶ Don't just want $\bar{F}(\cdot) = \mathbb{E}_{\omega}[F(\cdot,\omega)]$
- We want the forward operator

$$p_{k+1} = \mathcal{F}(p_k) = \int p_k \circ F(\cdot, \omega) d\pi(\omega)$$

▶ Note: $\int p_k \circ F(\cdot, \omega) d\pi(\omega) \neq p_k \circ \int F(\cdot, \omega) d\pi(\omega)$

STOCHASTIC FORECASTING = OPERATOR ESTIMATION

 \blacktriangleright Represent \mathcal{F} in a basis

$$A_{ij} = \langle \phi_i, \mathcal{F} \phi_j \rangle = \langle \phi_i, \phi_j \circ \mathcal{F} \rangle \approx \frac{1}{N} \sum_{k=1}^N \phi_i(x_k) \phi_j(x_{k+1})$$

- ► Error Sources: Bias, variance, and truncation
- ▶ Which basis?
 - ► Respect the measure ⇒ Eliminate bias
 - ► Leverage smoothness ⇒ Minimize variance
 - ► Capture global structure ⇒ Minimize truncation

WHAT IS MANIFOLD LEARNING?

- ► Manifold learning ⇔ Estimating Laplace-Beltrami
- ► Eigenfunctions $\Delta \varphi_i = \lambda_i \varphi_i$ orthonormal basis for $L^2(\mathcal{M})$
- ▶ Smoothest functions: φ_i minimizes the functional

$$\lambda_{i} = \min_{\substack{f \perp \varphi_{k} \\ k=1, \dots, i-1}} \left\{ \frac{\int_{\mathcal{M}} ||\nabla f||^{2} dV}{\int_{\mathcal{M}} |f|^{2} dV} \right\}$$

- ► Eigenfunctions of ∆ are custom Fourier basis
 - ▶ Smoothest orthonormal basis for $L^2(\mathcal{M})$
 - ► Can be used to define wavelets
 - ► Define the Hilbert/Sobolev spaces on M

CONFORMALLY INVARIANT DIFFUSION MAPS (CIDM)

- ▶ Data samples $\{x_i\}_{i=1}^N \subset \mathcal{M} \subset \mathbb{R}^n$ of volume $p_{eq} dV$
- Continuous k-Nearest Neighbors (CkNN) dissimilarity:

$$d(x_i, x_j) \equiv \frac{||x_i - x_j||}{\sqrt{||x_i - x_{kNN(i)}|| \, ||x_j - x_{kNN(j)}||}}$$

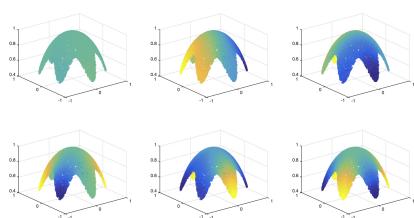
- ▶ Variable bandwidth kernel, $K_{ij} = \exp\left(\frac{-d(x_i, x_j)^2}{\delta^2}\right)$
- ▶ Degree matrix $D_{ii} = \sum_i K_{ii}$ (diagonal)
- ► Graph Laplacian, $L = \frac{D-K}{sd+2}$

0000

- ► Theorem: $L\vec{f} = \Delta_{\hat{g}}f + \mathcal{O}\left(\delta^2, N^{-1/2}\delta^{-1-d/2}\right), \ \hat{g} = p_{\mathrm{eq}}^{2/d}g$
- ▶ Solve: $(I D^{-1/2}KD^{-1/2})\vec{v} = \lambda\vec{v}$, set $\vec{\varphi} = D^{-1/2}\vec{v}$

► Manifolds with boundary, (R. Vaughn)

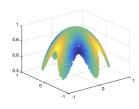
$$\vec{h}^{\top} L \vec{f} \rightarrow \int (\nabla h \cdot \nabla f) \, p_{\text{eq}} dV$$

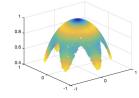


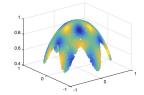
HARMONIC ANALYSIS ON MANIFOLDS/DATA SETS

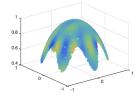
► Manifolds with boundary, (R. Vaughn)

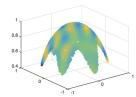
$$ec{h}^{ op} L ec{f}
ightarrow \left<\left<
abla_{\hat{g}} h,
abla_{\hat{g}} f \right>
ight>_{\hat{g}} = \int \hat{g}(
abla_{\hat{g}} h,
abla_{\hat{g}} f) \, dV_{\hat{g}}$$

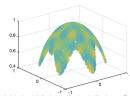












FORECASTING THE FOKKER-PLANK PDE

- ▶ Dynamical system: $dx = a(x) dt + b(x) dW_t$
- ▶ Uncertain initial state x(0) with density p(x,0)
- ▶ Density solves Fokker-Planck PDE, $p_t = \mathcal{L}^* p$ where

$$\mathcal{L}^*p = -\nabla \circ (pa) + \frac{1}{2} \sum_{i,j} \frac{\partial^2}{\partial x_i \partial x_j} \left(p \sum_k b_{ik} b_{jk} \right)$$

► Semigroup solution, $p(x, t) = e^{t\mathcal{L}^*}p(x, 0)$

- ▶ Given data samples $x_i = x(t_i)$ with $\tau = t_{i+1} t_i$
- ▶ Define the *shift map* of a function by $Sf(x_i) = f(x_{i+1})$
- Using the Itô lemma we can show:

$$Sf(x_i) = f(x_{i+1}) = e^{\tau \mathcal{L}} f(x_i) + \int_{t_i}^{t_{i+1}} \nabla f^{\top} b \, dW_s + \int_{t_i}^{t_{i+1}} Bf \, ds$$

- ▶ Notice: $\mathbb{E}[S(f)] = e^{\tau \mathcal{L}} f$
- ▶ Need to minimize the stochastic integrand $\nabla f^{\top}b$

FORECASTING WITH THE SHIFT MAP

Forecasting Perspectives

$$egin{align*} egin{align*} egin{align*}$$

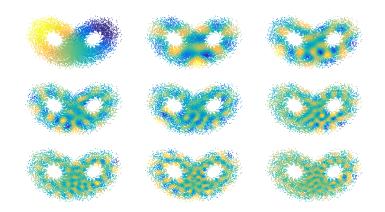
- ► Estimate A_{li} with $\hat{A}_{li} = \frac{1}{N} \sum_{i=1}^{N} \varphi_i(x_i) \varphi_l(x_{i+1})$
- $ightharpoonup \mathbb{E}[\hat{A}_{lj}] = A_{lj}$ with error $\mathcal{O}(||\nabla \varphi_l||_{p_{eq}} \sqrt{\tau/N})$

- ▶ Need to minimize the error term $\mathcal{O}(||\nabla \varphi_I||_{p_{eq}}\sqrt{\tau/N})$
- $\blacktriangleright \ \ \text{The eigenfunctions} \ \Delta_{\hat{g}}\varphi_j = \lambda_j\varphi_j \ \text{minimize} \ ||\nabla\varphi_j||_{p_{\text{eq}}} = \lambda_j$
- ► Find φ_i with Manifold Learning: CIDM

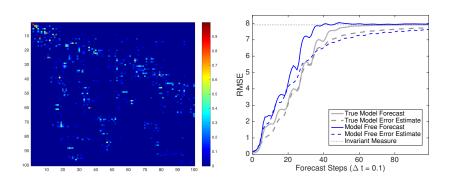
Manifold Learning ⇒ Custom 'Fourier' basis

Forecasting Perspectives

▶ **Optimal basis:** Minimum variance $A_{lj} \equiv \mathbb{E}[\langle \varphi_j, S\varphi_l \rangle_{p_{eq}}]$



SHIFT MAP ⇒ MARKOV MATRIX



DIFFUSION FORECAST EXAMPLE

(Loading Video...)

RELATIONSHIP TO CLASSICAL METHODS

- ► For partial observations, use Takens' reconstruction
- ► Local linear representations
 - Nearest neighbor interpolation
 - Diffusion forecast extends the map to distributions
- ► Partition state space ⇒ Markov matrix
 - ▶ Also uses the shift map, just a different basis
 - ► Diffusion forecast is optimal basis for estimation

▶ Create a random (recurrent) network $v_k \in \mathbb{R}^N$

$$v_{k+1} = f(Av_k + Bx_k)$$

 \triangleright Continuously feed in the time series x_k

$$v_{k+1} = f(Af(Av_{k-1} + Bx_{k-1}) + Bx_k) = \cdots$$

= $f(Af(A \cdots f(Av_{k-\tau} + Bx_{k-\tau}) + \cdots) + Bx_k)$
= $g(x_k, x_{k-1}, ..., x_{k-\tau})$

- ▶ Predict: $x_{k+1} = Wv_k = Wg(x_k, ..., x_{k-\tau})$
- ▶ Since $\lambda_{max}(A)$ < 1 network forgets distant past
- Effectively a random diffeomorphism of a delay embedding
- Effectively uses a linear combination W of random basis!

PROBLEM: CURSE OF DIMENSIONALITY

Nonparametric methods → Data required grows like a^{dim}

PROJECTIONS OF HIGH DIMENSIONAL DYNAMICS

► Consider the 40-dimensional Lorenz-96 system:

$$\dot{x}_i = x_{i-1}x_{i+1} - x_{i-1}x_{i-2} - x_i + 8$$

► Assume we only observe a projection of this system

$$y = h(x_1, ..., x_{40})$$

- ▶ Example: Spatial Fourier mode $y = \hat{x}_{\omega} = \sum_{k=1}^{40} x_i e^{-k\omega}$
- ► Evolution of *y* is not closed, sometimes modeled by SDEs

ATTRACTOR RECONSTRUCTION

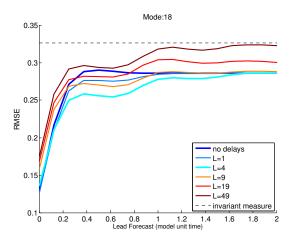
- ▶ Evolution of y = h(x) is not closed (missing information)
- ► Idea: Use delay-embedding to recover the missing info
- Problem 1: Delay embeddings are biased towards stable directions

$$\tilde{y}_t \equiv (y_t, y_{t-\tau}, ..., y_{t-L\tau}) = (h(x_t), h(F_{-\tau}(x_t), ..., h(F_{-L\tau}(x_t)))$$

- ► Problem 2: Curse-of-dimensionality prevents learning the full attractor
- ► Adding some delays helps, but adding too many hurts

ATTRACTOR RECONSTRUCTION

- ▶ Evolution of y = h(x) is not closed
- ► Adding some delays helps, but adding too many hurts



NEXT STEPS: MORI-ZWANZIG FORMALISM

- ▶ Evolution of y = h(x) is not closed
- ▶ Delay-embedding, \tilde{y}_t only yeilds partial reconstruction
- Projections of dynamical systems can be closed as

Mori-Zwanzig formalism:
$$\frac{d}{dt}\tilde{y} = V + K + R$$

- ► Diffusion Forecast includes: V (Markovian), R (stochastic)
- ▶ Missing the memory term: $K = \int_{-\infty}^{t} K(s, \tilde{y}_t, \tilde{y}_s) \tilde{y}_s ds$

Consider a synthetic sensor given by a generic sigmoid,

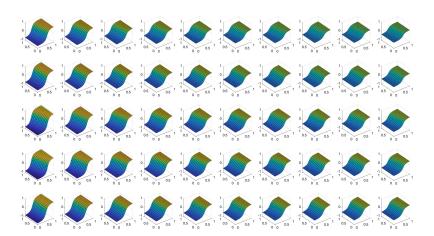
$$h_{s}(\vec{x}, \vec{z}) = \arctan\left((\vec{\alpha}(\vec{z})^{\top} \vec{x}) + (\vec{\beta}(\vec{z})^{\top} \vec{x}) + (\vec{x})_{s} \right)$$

with input \vec{x} , sensor parameters \vec{z} , and crosstalk:

$$\alpha(\vec{z}) = \vec{\alpha}_0 + (\vec{z})_1 \vec{\alpha}_1 + (\vec{z})_2 \vec{\alpha}_2 \qquad \qquad \vec{\beta}(\vec{z}) = \vec{\beta}_0 + (\vec{z})_1 \vec{\beta}_1 + (\vec{z})_2 \vec{\beta}_2$$

SYNTHETIC SENSOR

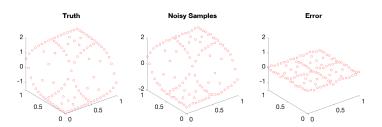
Each plot is a response curve for a synthetic sensor:



RESPONSE CURVE REPRESENTATION

A response curve could be represented by:

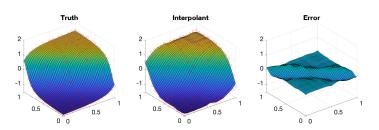
- ► A list of responses at each input grid point (vectorize)
- ► Coefficients in a basis (sparse grids used here)
- ▶ The true parameters \vec{z} (unknown)
- ► A data-driven 'sensor space' (copy of \vec{z})



RESPONSE CURVE REPRESENTATION

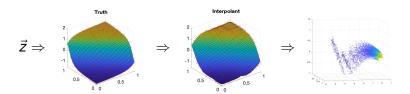
A response curve could be represented by:

- ► A list of responses at each input grid point (vectorize)
- ► Coefficients in a basis (sparse grids used here)
- ▶ The true parameters \vec{z} (unknown)
- ▶ A data-driven 'sensor space' (copy of \vec{z})



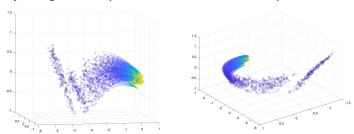
True parameters, \vec{z}

- \Rightarrow Response curve, $h(\vec{x}, \vec{z})$
- \Rightarrow Sparse grid coefficients, $h(\vec{x}, \vec{z}) = \sum_{i,j} c_{i,j}(\vec{z}) \phi_{i,j}(\vec{x})$
- \Rightarrow Sensor space, $\mathcal{P}(\vec{c}(\vec{z}))$



SENSOR SPACE

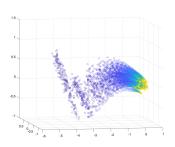
Projecting 200 response curves, each dot represents a sensor

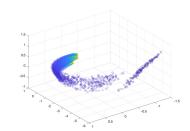


Response curves evolve over time, color represents time

ADVANTAGE OF SENSOR SPACE

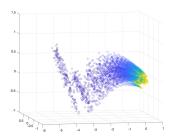
- ► Learn sensor space from a training set of sensors, sampled over time if possible
- Quick calibration: A few tests can determine location in sensor space
- Active calibration: Update sensor space location, eg. using Kalman filter

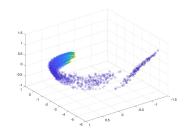




DIFFUSION MAP/FORECAST APPLICATION

- ▶ Represent sensor as a distribution on sensor space
- ► Diffusion map provides the basis functions
- ► Diffusion forecast can predict sensor drift
- ▶ No model required, purely data driven





FILTER MODEL

Forecasting Perspectives

► Observation Function (sparse grid interpolation):

$$\vec{y}_k = h(\vec{x}_k, \vec{z}_k) + \vec{\nu}_k \qquad \qquad \vec{\nu}_k \sim \mathcal{N}(0, R).$$

► Sensor evolution (data-driven forecast):

$$ec{z}_{k+1} = g(ec{z}_k) + ec{\eta}_k \qquad \qquad ec{\eta}_k \sim \mathcal{N}(0, T).$$

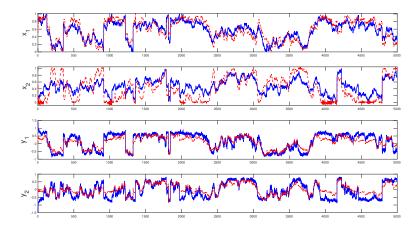
State evolution (minimal continuity assumption):

$$\vec{x}_{k+1} = \vec{x}_k + \vec{\omega}_k$$
 $\vec{\omega}_k \sim \mathcal{N}(0, Q).$

▶ Kalman Filter:

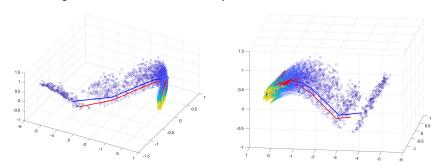
$$\begin{pmatrix} \hat{x}_{k+1} \\ \hat{z}_{k+1} \end{pmatrix} = \begin{pmatrix} \alpha \hat{x}_k \\ g(\hat{z}_k) \end{pmatrix} + K_k(\vec{y}_{k+1} - h(\alpha \hat{x}_k, g(\hat{z}_k)))$$

FILTER EXAMPLE



FILTER EXAMPLE

Recovering the location in sensor space:



FUTURE DIRECTIONS: SENSOR-ARRAY CALIBRATION

- ► Collection of sensor $\{y_i(t) = h_i(t)(x(t), z_i(t))\}_{i=1}^N$
- ► x is very high-dimensional, sensors only partially observe
- ► Build cross-sensor forecast models:

$$\hat{y}_i(t) = f_{ij}(\vec{y}_{I(i,j)}(t)) + \eta_{ij}(t)$$

- \blacktriangleright Choose predictors, I(i,j) via cross-validation
- ▶ Use $\hat{y}_i y_i$ to auto-calibrate and detect sensor failure

Code and papers available at:

http://math.gmu.edu/~berry/

Building the basis

- ► B. and Sauer, Consistent Manifold Representation for Topological Data Analysis.
- ► Coifman and Lafon, Diffusion maps.
- ▶ B. and Harlim, Variable Bandwidth Diffusion Kernels.
- B. and Sauer, Local Kernels and Geometric Structure of Data.

Diffusion forecast

- B., Giannakis, and Harlim, Nonparametric forecasting of low-dimensional dynamical systems.
- B. and Harlim, Forecasting Turbulent Modes with Nonparametric Diffusion Models.

