0000	00	0000000	000000	0000000000
BIASED OBS	CORRECTING BIAS	WITH TRAINING DATA	WITHOUT TRAINING DATA	RESULTS

Overcoming model and observation error in data assimilation using manifold learning

Tyrus Berry Dept. of Mathematical Sciences George Mason University

> Joint Math Meetings January 17, 2019

Joint work with John Harlim, Franz Hamilton, and Tim Sauer

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Consider the standard filtering problem,

$$\begin{aligned} \mathbf{x}_i &= f(\mathbf{x}_{i-1}) + \omega_{i-1} \\ \mathbf{y}_i &= h(\mathbf{x}_i) + \eta_i \end{aligned}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider the standard filtering problem,

$$\begin{aligned} x_i &= f(x_{i-1}) + \omega_{i-1} \\ y_i &= h(x_i) + \eta_i \end{aligned}$$

Filtering: Given $y_1, ..., y_k$ estimate x_k or $P(x_k | y_1, ..., y_k)$

$$x_i = f(x_{i-1}) + \omega_{i-1}$$

$$y_i = h(x_i) + \eta_i$$

- Filtering: Given $y_1, ..., y_k$ estimate x_k or $P(x_k | y_1, ..., y_k)$
 - ► Forecast: From $P(x_k | y_1, ..., y_k)$ find prior $P(x_{k+1} | y_1, ..., y_k)$

$$x_i = f(x_{i-1}) + \omega_{i-1}$$

$$y_i = h(x_i) + \eta_i$$

- Filtering: Given $y_1, ..., y_k$ estimate x_k or $P(x_k | y_1, ..., y_k)$
 - ► Forecast: From $P(x_k | y_1, ..., y_k)$ find prior $P(x_{k+1} | y_1, ..., y_k)$
 - Assimilate: Combine prior with likelihood $P(y_{k+1} | x_{k+1})$

$$x_i = f(x_{i-1}) + \omega_{i-1}$$

$$y_i = h(x_i) + \eta_i$$

- Filtering: Given $y_1, ..., y_k$ estimate x_k or $P(x_k | y_1, ..., y_k)$
 - ► Forecast: From $P(x_k | y_1, ..., y_k)$ find prior $P(x_{k+1} | y_1, ..., y_k)$
 - Assimilate: Combine prior with likelihood $P(y_{k+1} | x_{k+1})$
- Kalman-based Filtering:

$$x_i = f(x_{i-1}) + \omega_{i-1}$$

$$y_i = h(x_i) + \eta_i$$

- Filtering: Given $y_1, ..., y_k$ estimate x_k or $P(x_k | y_1, ..., y_k)$
 - ► Forecast: From $P(x_k | y_1, ..., y_k)$ find prior $P(x_{k+1} | y_1, ..., y_k)$
 - Assimilate: Combine prior with likelihood $P(y_{k+1} | x_{k+1})$
- Kalman-based Filtering:
 - ► Forecast: Local Linear (EKF) or Ensemble (EnKF)

$$x_i = f(x_{i-1}) + \omega_{i-1}$$

$$y_i = h(x_i) + \eta_i$$

- Filtering: Given $y_1, ..., y_k$ estimate x_k or $P(x_k | y_1, ..., y_k)$
 - ► Forecast: From $P(x_k | y_1, ..., y_k)$ find prior $P(x_{k+1} | y_1, ..., y_k)$
 - Assimilate: Combine prior with likelihood $P(y_{k+1} | x_{k+1})$
- Kalman-based Filtering:
 - ► Forecast: Local Linear (EKF) or Ensemble (EnKF)
 - Assimilate: Gaussian assumption + Bayesian posterior

Consider the standard filtering problem,

$$x_i = f(x_{i-1}) + \omega_{i-1}$$

$$y_i = h(x_i) + \eta_i$$

- Model error: Specify variables, unknown dynamics
- Observation error: Specify dynamics, unknown mapping

Both unknown: Underdetermined

Consider the standard filtering problem,

$$\begin{aligned} x_i &= f(x_{i-1}) + \omega_{i-1} \\ y_i &= h(x_i) + \eta_i \end{aligned}$$

- True observation function h(x) is unknown
- ► Assume we have a guess g(x) and

$$y_i = h(x_i) + \eta_i = g(x_i) + \frac{b_i}{b_i} + \eta_i$$

• Bias: $b_i \equiv h(x_i) - g(x_i)$

Consider the standard filtering problem,

$$\begin{aligned} x_i &= f(x_{i-1}) + \omega_{i-1} \\ y_i &= h(x_i, \eta_i) \end{aligned}$$

- True observation function h is unknown
- Assume we have a guess g and

$$y_i = h(x_i, \eta_i) = g(x_i, \eta_i) + b_i$$

• Stochastic Bias: $b_i \equiv h(x_i, \eta_i) - g(x_i, \eta_i)$

EXAMPLE 1: LORENZ-96

► 40-dimensions:

$$\dot{x}_{j} = x_{j-1}(x_{j+1} - x_{j-2}) - x_{j} + 8$$

Observe 20 variables, 7 are 'cloudy'

$$h(x_k) = \begin{cases} x_k & \xi_i > 0.8\\ \beta_k x_k - 8 & \text{else} \end{cases}$$
$$\beta_k \sim \mathcal{N}(0.5, 1/50).$$
$$\xi_i \sim \mathcal{U}(0, 1)$$

EXAMPLE 1: LORENZ-96

- The result is a bimodal distribution, "cloudy/clear"
- Obs Model Error = True Obs g(True State)

CORRECTING THE BIAS

- Our goal is to find $p(b_i | y_i)$
- ► We can then correct our observation function

$$\hat{h}(x_i^f) \equiv g(x_i^f) + \hat{b}_i$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Where $\hat{b}_i = \mathbb{E}_{p(b_i \mid y_i)}[b_i]$
- Since \hat{b}_i random:
 - Inflate the obs noise covariance
 - Use $\hat{R}_{b_i} = \mathbb{E}_{p(b_i \mid y_i)}[(b_i \hat{b}_i)(b_i \hat{b}_i)^{\top}]$

BIASED OBS	CORRECTING BIAS	WITH TRAINING DATA	WITHOUT TRAINING DATA	RESULTS
0000	00	0000000	000000	0000000000

CORRECTING THE BIAS

- Need to find $p(b_i | y_i)$
- ► From the forecast step we have a prior *p*(*b_i*)
 - Forecast $x_i^f \Rightarrow$ Bias estimate: $y_i g(x_i^f)$
 - Prior $p(b_i) = \mathcal{N}(y_i g(x_i^f), P_i^y)$
- Use Bayes' $p(b_i | y_i) = p(b_i)p(y_i | b_i)$
- Need the likelihood $p(y_i | b_i)$
- Use kernel estimation of conditional distributions

LEARNING THE CONDITIONAL DISTRIBUTION

- Given training data (y_i, b_i) our goal is to learn $p(y_i | b_i)$
- For a kernel $K(\alpha, \beta) = e^{-\frac{||\alpha-\beta||^2}{\delta^2}}$ we define Hilbert spaces

$$\mathcal{H}_{y} = \left\{ \sum_{i=1}^{N} a_{i} \mathcal{K}(y_{i}, \cdot) : \vec{a} \in \mathbb{R}^{N}
ight\}$$
 $\mathcal{H}_{b} = \left\{ \sum_{i=1}^{N} a_{i} \mathcal{K}(b_{i}, \cdot) : \vec{a} \in \mathbb{R}^{N}
ight\}$

- Eigenvectors ϕ_{ℓ} of $K_{ij} = K(y_i, y_j)$ are a basis for \mathcal{H}_y .
- Similarly φ_k are a basis for \mathcal{H}_b .

LEARNING THE CONDITIONAL DISTRIBUTION

- We assume that p(y | b) can be approximated in $\mathcal{H}_y \otimes \mathcal{H}_b$
- Let $C_{ij}^{yb} = \langle \phi_i, \varphi_j \rangle$ and $C_{ij}^{bb} = \langle \varphi_i, \varphi_j \rangle$ then define

$$C^{y|b} = C^{yb} \left(C^{bb} + \lambda I
ight)^{-2}$$

• We can then define a consistent estimator of p(y | b) by

$$\hat{\rho}(y \mid b) = \sum_{i,j=1}^{N} C_{i,j}^{y \mid b} \phi_i(y) \varphi_j(b) \hat{q}(y)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

BIASED OBS	CORRECTING BIAS	With Training Data 00●0000	Without Training Data	RESULTS

CORRECTING THE BIAS

0.6

0.5

0.4

Probability 5.0

0.2

0.1

٥

-14 -12

Prior. p(b)

Likelihood, p(y_i | b_l)

Bias Prior, b.

O Bias Posterior, $\hat{\mu}_b$

True Model Error, b

-10

Obs Model Error

- Below plots have $y_i \approx -4$
- Left is clear, right is cloudy
- Notice bimodal likelihood

-2

< □ > < □ > < Ξ > < Ξ > < Ξ > . Ξ · のへぐ

BIASED OBS	CORRECTING BIAS	With Training Data 000€000	Without Training Data	Results 0000000000

OVERVIEW

- ► Learning Phase: Given training data set (*x_i*, *y_i*)
 - Compute the biases $b_i = y_i g(x_i)$
 - Learn the conditional distribution p(y | b)
- ► **Filtering:** Forecast $x_i^f \Rightarrow$ Bias estimate: $y_i g(x_i^f)$
 - Prior $p(b) = \mathcal{N}(y_i g(x_i^f), P_i^y)$
 - Likelihood $p(y_i | b)$ from learning phase
 - Apply Bayes: $p(b | y_i) = p(b)p(y_i | b)$
- Estimate bias \hat{b}_i and correct the observation

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BIASED OBS	CORRECTING BIAS	WITH TRAINING DATA	WITHOUT TRAINING DATA	Results 0000000000

OVERVIEW

BIASED OBS	CORRECTING BIAS	WITH TRAINING DATA	WITHOUT TRAINING DATA	RESULTS
0000	00	0000000	000000	0000000000

LORENZ-96 RESULTS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LORENZ-96 RESULTS

- Works well with small measurement noise
- Observations need to be precise, but not accurate

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ = - のへで

Consider the standard filtering problem,

$$x_i = f(x_{i-1}) + \omega_{i-1}$$

$$y_i = h(x_i) + \eta_i$$

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- True observation function h(x) is unknown
- Guess g(x) and bias: $b_i \equiv h(x_i) g(x_i)$
- ► Previously: Given training data, {(x_i, y_i)}
- Now: Only have observations, $\{y_i\}$.
- Idea: Iteratively estimate the bias

ITERATIVE BIAS ESTIMATION

► Get the filter running with the bad obs g (inflate R)

$$\hat{b}_{k}^{\left(0
ight)}=y_{k}-g\left(x_{k}^{\left(0
ight)}
ight)$$

Takens' embedding to identify similar states:

$$z_k = [y_k, y_{k-1}, \ldots, y_{k-d}]$$

Smooth the bias with local linear interpolation:

$$b^{(0)}(x_k) = \sum_i e^{-rac{||z_k-z_i||^2}{\epsilon^2}} \hat{b}_i^{(0)}$$

Update the observation function:

$$g^{(1)} = g + b^{(0)}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

BIASED OBS	CORRECTING BIAS	WITH TRAINING DATA	WITHOUT TRAINING DATA	Results
0000	00	000000	00000	0000000000

ITERATIVE BIAS ESTIMATION

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

EXAMPLE 2: LORENZ-63

- 3-dimensional chaotic ODE
- True Obs:

$$h(\vec{x}) = h\left(\left[\begin{array}{c} x_1\\ x_2\\ x_3\end{array}\right]\right) = \left[\begin{array}{c} \sin(x_1)\\ x_2 - 6\\ \cos(x_3)\end{array}\right]$$

Guess:

$$g(\vec{x}) = g\left(\left[\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right]$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

BIASED OBS CORRECTING BIAS WITH TRAINING DATA

WITHOUT TRAINING DATA

RESULTS 0000000000

EXAMPLE 2: LORENZ-63

40

30

N 20

10

0

2

4

Time 6 (c)

8

BIASED OBS	CORRECTING BIAS	WITH TRAINING DATA	WITHOUT TRAINING DATA	RESULTS
0000	00	0000000	00000	000000000

PUTTING THE TWO METHODS TOGETHER

- Step 1: Iterative Estimation
 - Using historical observations, offline
- Step 2: Conditional Estimation
 - ► Use data from step 1 to train RKHS, online

BIASED OBS	CORRECTING BIAS	WITH TRAINING DATA	WITHOUT TRAINING DATA	RESULTS
0000	00	000000	000000	•000000000

EXAMPLE 3: INTRACELLULAR FROM EXTRACELLULAR

>

Consider a 7-dim'l model for a column of atmosphere

- Baroclinic anomaly potential temperatures, θ_1 and θ_2
- Boundary layer anomaly potential temperature, θ_{eb}
- Vertically averaged water vapor content, q
- Cloud fractions: congestus f_c , deep f_d , and stratiform f_s
- Extrapolate anomaly potential temperature at height z

$$T(z) = heta_1 \sin(rac{z\pi}{Z_T}) + 2 heta_2 \sin(rac{2z\pi}{Z_T}), \quad z \in [0, 16]$$

Khouider, B., J. Biello, and A. J. Majda, 2010: A stochastic multicloud model for tropical convection.

Extrapolate anomaly potential temperature at height z

$$T(z) = heta_1 \sin(rac{2\pi}{Z_T}) + 2 heta_2 \sin(rac{2z\pi}{Z_T}), \quad z \in [0, 16]$$

Brightness temperature-like quantity at wavenumber-v

$$h_{\nu}(x,f) = (1 - f_d - f_s) \Big[(1 - f_c) \big(\theta_{eb} T_{\nu}(0) + \int_0^{z_c} T(z) \frac{\partial T_{\nu}}{\partial z}(z) \, dz \big] + f_c T(z_c) T_{\nu}(z_c) + \int_{z_c}^{z_d} T(z) \frac{\partial T_{\nu}}{\partial z}(z) \, dz \Big]$$
(1)
+ $(f_d + f_s) T(z_d) T_{\nu}(z_d) + \int_{z_d}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) \, dz,$

• Setting f = 0 is the clear sky model

Weighting functions define RTM at different wavenumbers

・ロト・日本・日本・日本・日本・日本

Biases at the 16 observed wavenumbers

= nar

Multimodal likelihood functions

EXAMPLE 4: "SATELLITE-LIKE" OBS (ITERATIVE)

BIASED OBS CORRECT

CORRECTING BIAS

WITH TRAINING DATA

WITHOUT TRAINING DATA

RESULTS 0000000000

EXAMPLE 4: "SATELLITE-LIKE" OBS (RKHS)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

REFERENCES

http://math.gmu.edu/~berry/

- ► J. Harlim, T. Berry, Correcting biased observation model error in data assimilation. Monthly Weather Review (2017).
- F. Hamilton, T. Berry, T. Sauer, Correcting Observation Model Error in Data Assimilation (preprint).
- F. Hamilton, T. Berry, T. Sauer, Tracking intracellular dynamics through extracellular measurements. PloS One (2018).