

Overcoming model and observation error in data assimilation using manifold learning

Tyrus Berry *Dept. of Mathematical Sciences George Mason University*

> Joint Math Meetings January 17, 2019

Joint work with John Harlim, Franz Hamilton, and Tim Sauer

 \triangleright Consider the standard filtering problem,

$$
x_i = f(x_{i-1}) + \omega_{i-1}
$$

$$
y_i = h(x_i) + \eta_i
$$

K ロ ▶ K (日) → K ミ > K ミ → S → S → O Q (V

 \triangleright Consider the standard filtering problem,

$$
x_i = f(x_{i-1}) + \omega_{i-1}
$$

$$
y_i = h(x_i) + \eta_i
$$

KED KARD KED KED E YORA

 \blacktriangleright Filtering: Given $y_1, ..., y_k$ estimate x_k or $P(x_k | y_1, ..., y_k)$

 \triangleright Consider the standard filtering problem,

$$
x_i = f(x_{i-1}) + \omega_{i-1}
$$

$$
y_i = h(x_i) + \eta_i
$$

- \blacktriangleright Filtering: Given $y_1, ..., y_k$ estimate x_k or $P(x_k | y_1, ..., y_k)$
	- ► Forecast: From $P(x_k | y_1, ..., y_k)$ find prior $P(x_{k+1} | y_1, ..., y_k)$

KED KARD KED KED E YORA

 \triangleright Consider the standard filtering problem,

$$
x_i = f(x_{i-1}) + \omega_{i-1}
$$

$$
y_i = h(x_i) + \eta_i
$$

- \blacktriangleright Filtering: Given $y_1, ..., y_k$ estimate x_k or $P(x_k | y_1, ..., y_k)$
	- Forecast: From $P(x_k | y_1, ..., y_k)$ find prior $P(x_{k+1} | y_1, ..., y_k)$

イロト イ押 トイミト イミト・ミニ りなべ

 \triangleright Assimilate: Combine prior with likelihood $P(y_{k+1} | x_{k+1})$

 \triangleright Consider the standard filtering problem,

$$
x_i = f(x_{i-1}) + \omega_{i-1}
$$

$$
y_i = h(x_i) + \eta_i
$$

- \blacktriangleright Filtering: Given $y_1, ..., y_k$ estimate x_k or $P(x_k | y_1, ..., y_k)$
	- Forecast: From $P(x_k | y_1, ..., y_k)$ find prior $P(x_{k+1} | y_1, ..., y_k)$

KELKA (FELKE) E VOQO

- \triangleright Assimilate: Combine prior with likelihood $P(y_{k+1} | x_{k+1})$
- \blacktriangleright Kalman-based Filtering:

 \triangleright Consider the standard filtering problem,

$$
x_i = f(x_{i-1}) + \omega_{i-1}
$$

$$
y_i = h(x_i) + \eta_i
$$

- \blacktriangleright Filtering: Given $y_1, ..., y_k$ estimate x_k or $P(x_k | y_1, ..., y_k)$
	- ► Forecast: From $P(x_k | y_1, ..., y_k)$ find prior $P(x_{k+1} | y_1, ..., y_k)$

KELKA (FELKE) E VOQO

- \triangleright Assimilate: Combine prior with likelihood $P(y_{k+1} | x_{k+1})$
- \blacktriangleright Kalman-based Filtering:
	- \triangleright Forecast: Local Linear (EKF) or Ensemble (EnKF)

 \triangleright Consider the standard filtering problem,

$$
x_i = f(x_{i-1}) + \omega_{i-1}
$$

$$
y_i = h(x_i) + \eta_i
$$

- \blacktriangleright Filtering: Given $y_1, ..., y_k$ estimate x_k or $P(x_k | y_1, ..., y_k)$
	- ► Forecast: From $P(x_k | y_1, ..., y_k)$ find prior $P(x_{k+1} | y_1, ..., y_k)$
	- \triangleright Assimilate: Combine prior with likelihood $P(y_{k+1} | x_{k+1})$
- \blacktriangleright Kalman-based Filtering:
	- ▶ Forecast: Local Linear (EKF) or Ensemble (EnKF)
	- \triangleright Assimilate: Gaussian assumption + Bayesian posterior

 \triangleright Consider the standard filtering problem,

$$
x_i = f(x_{i-1}) + \omega_{i-1}
$$

$$
y_i = h(x_i) + \eta_i
$$

- \triangleright Model error: Specify variables, unknown dynamics
- \triangleright Observation error: Specify dynamics, unknown mapping

KELKA (FELKE) E VOQO

 \triangleright Both unknown: Underdetermined

 \triangleright Consider the standard filtering problem,

$$
x_i = f(x_{i-1}) + \omega_{i-1}
$$

$$
y_i = h(x_i) + \eta_i
$$

- \triangleright True observation function $h(x)$ is unknown
- \triangleright Assume we have a guess $g(x)$ and

$$
y_i = h(x_i) + \eta_i = g(x_i) + b_i + \eta_i
$$

 $\mathcal{A} \square \vdash \mathcal{A} \overline{\mathcal{B}} \rightarrow \mathcal{A} \ \overline{\mathcal{B}} \rightarrow \mathcal{A} \ \overline{\mathcal{B}} \rightarrow \square \ \overline{\mathcal{B}} \longrightarrow \mathcal{O} \ \mathcal{A} \ \mathcal{O}$

 \triangleright Bias: b_i ≡ $h(x_i) - g(x_i)$

 \triangleright Consider the standard filtering problem,

$$
x_i = f(x_{i-1}) + \omega_{i-1}
$$

$$
y_i = h(x_i, \eta_i)
$$

- ► True observation function *h* is unknown
- ► Assume we have a guess g and

$$
y_i = h(x_i, \eta_i) = g(x_i, \eta_i) + b_i
$$

イロト イ押 トイミト イミト・ミニ りなべ

► Stochastic Bias: $\mathbf{b}_i \equiv h(x_i, \eta_i) - g(x_i, \eta_i)$

EXAMPLE 1: LORENZ-96

 \blacktriangleright 40-dimensions:

$$
\dot{x}_j = x_{j-1}(x_{j+1} - x_{j-2}) - x_j + 8
$$

▶ Observe 20 variables, 7 are 'cloudy'

$$
h(x_k) = \begin{cases} x_k & \xi_i > 0.8\\ \beta_k x_k - 8 & \text{else} \end{cases}
$$

$$
\beta_k \sim \mathcal{N}(0.5, 1/50).
$$

$$
\xi_i \sim \mathcal{U}(0, 1)
$$

 OQ < □ > < □ > \equiv \equiv \sim

EXAMPLE 1: LORENZ-96

- \blacktriangleright The result is a bimodal distribution, "cloudy/clear"
- \triangleright Obs Model Error = True Obs g (True State)

←ロト (伊) → (ヨ) → (ヨ) \equiv OQ

CORRECTING THE BIAS

- \triangleright Our goal is to find $p(b_i | y_i)$
- \triangleright We can then correct our observation function

$$
\hat{h}(x_i^f) \equiv g(x_i^f) + \hat{b}_i
$$

.
← ロ ▶ ← 레 ≯ ← 콘 ≯ ← 콘 ≯ ← 콘 ← ◆) Q Q ←

- \blacktriangleright Where $\hat{b}_i = \mathbb{E}_{\rho(b_i \,|\, y_i)}[b_i]$
- \blacktriangleright Since \hat{b}_i random:
	- \blacktriangleright Inflate the obs noise covariance
	- ▶ Use $\hat{R}_{b_i} = \mathbb{E}_{\rho(b_i \,|\, y_i)}[(b_i \hat{b}_i)(b_i \hat{b}_i)^\top]$

CORRECTING THE BIAS

- \blacktriangleright Need to find $p(b_i | y_i)$
- From the forecast step we have a prior $p(b_i)$
	- ► Forecast x_i^f \Rightarrow Bias estimate: $y_i g(x_i^f)$
	- ► Prior $p(b_i) = \mathcal{N}(y_i g(x_i^f), P_i^y)$ *i*)
- \blacktriangleright Use Bayes' $p(b_i | y_i) = p(b_i) p(y_i | b_i)$
- \blacktriangleright Need the likelihood $p(y_i | b_i)$
- \blacktriangleright Use kernel estimation of conditional distributions

LEARNING THE CONDITIONAL DISTRIBUTION

- \blacktriangleright Given training data (y_i, b_i) our goal is to learn $p(y_i | b_i)$
- \blacktriangleright For a kernel $K(\alpha, \beta) = e^{-\frac{||\alpha \beta||^2}{\delta^2}}$ $\overline{\delta^2}$ we define Hilbert spaces

$$
\mathcal{H}_{y} = \left\{ \sum_{i=1}^{N} a_{i} K(y_{i}, \cdot) : \vec{a} \in \mathbb{R}^{N} \right\}
$$

$$
\mathcal{H}_{b} = \left\{ \sum_{i=1}^{N} a_{i} K(b_{i}, \cdot) : \vec{a} \in \mathbb{R}^{N} \right\}
$$

 \blacktriangleright Eigenvectors ϕ_ℓ of $\mathcal{K}_{ij} = \mathcal{K}(y_i, y_j)$ are a basis for $\mathcal{H}_\mathcal{Y}.$

Similarly φ_k are a basis for \mathcal{H}_h .

B[IASED](#page-9-0) OBS C[ORRECTING](#page-13-0) BIAS WITH T[RAINING](#page-15-0) DATA WITHOUT T[RAINING](#page-22-0) DATA R[ESULTS](#page-28-0)

LEARNING THE CONDITIONAL DISTRIBUTION

- ► We assume that $p(y | b)$ can be approximated in $\mathcal{H}_V \otimes \mathcal{H}_b$
- \blacktriangleright Let $C_{ij}^{\mathsf{y}\mathsf{b}}=\big\langle \phi_i, \varphi_j \big\rangle$ and $C_{ij}^{\mathsf{b}\mathsf{b}}=\big\langle \varphi_i, \varphi_j \big\rangle$ then define

$$
C^{\mathsf{y}|\mathsf{b}}=C^{\mathsf{y}\mathsf{b}}\left(C^{\mathsf{b}\mathsf{b}}+\lambda I\right)^{-1}
$$

 \triangleright We can then define a consistent estimator of $p(y | b)$ by

$$
\hat{p}(y | b) = \sum_{i,j=1}^N C_{i,j}^{y|b} \phi_i(y) \varphi_j(b) \hat{q}(y)
$$

CORRECTING THE BIAS

Prior, $p(b_\ell)$
Likelihood, $p(y_i \,|\, b_\ell)$ Posterior, $p(b_\ell | y_i)$ Bias Prior, \hat{b} Bias Posterior, $\hat{\mu}_b$ True Model Error, b

 $0 - 14$

0.1 0.2 0.3 $\begin{bmatrix} 0.4 \\ -1.4 \\ 0.3 \end{bmatrix}$
Probability

0.5 0.6

- **►** Below plots have $y_i \approx -4$
- \blacktriangleright Left is clear, right is cloudy
- \triangleright Notice bimodal likelihood

 \equiv (ロ) (同) \equiv \rightarrow OQ \sim

OVERVIEW

- \blacktriangleright Learning Phase: Given training data set (x_i, y_i)
	- \triangleright Compute the biases $b_i = y_i q(x_i)$
	- Example 1. Learn the conditional distribution $p(y | b)$
- ► Filtering: Forecast x_i^f \Rightarrow Bias estimate: $y_i g(x_i^f)$
	- ► Prior $p(b) = \mathcal{N}(y_i g(x_i^f), P_i^y)$ *i*)
	- \blacktriangleright Likelihood $p(y_i | b)$ from learning phase
	- \blacktriangleright Apply Bayes: $p(b | y_i) = p(b)p(y_i | b)$
- \blacktriangleright Estimate bias \hat{b}_i and correct the observation

イロト イ団 トイミト イミト ニミー りんぐ

OVERVIEW

←ロト (伊) → (ヨ) → (ヨ) $\circledcirc \circledcirc \circledcirc$ \equiv

LORENZ-96 RESULTS

 OQ $\leftarrow \Box \rightarrow$ \overline{a} \sim Ξ

LORENZ-96 RESULTS

- \triangleright Works well with small measurement noise
- \triangleright Observations need to be precise, but not accurate

아마 아버리 아이들 아이들이 나를 했다.

 OQ

 \triangleright Consider the standard filtering problem,

$$
x_i = f(x_{i-1}) + \omega_{i-1}
$$

$$
y_i = h(x_i) + \eta_i
$$

- \triangleright True observation function $h(x)$ is unknown
- \triangleright Guess *g*(*x*) and bias: *b*_{*i*} ≡ *h*(*x*_{*i*}) − *g*(*x*_{*i*})
- \blacktriangleright Previously: Given training data, $\{(x_i, y_i)\}$
- \triangleright Now: Only have observations, $\{y_i\}$.
- \blacktriangleright Idea: Iteratively estimate the bias

ITERATIVE BIAS ESTIMATION

 \triangleright Get the filter running with the bad obs *g* (inflate *R*)

$$
\hat{b}_k^{(0)} = y_k - g\left(x_k^{(0)}\right)
$$

 \blacktriangleright Takens' embedding to identify similar states:

$$
z_k = [y_k, y_{k-1}, \ldots, y_{k-d}]
$$

 \triangleright Smooth the bias with local linear interpolation:

$$
b^{(0)}(x_k) = \sum_i e^{-\frac{||z_k - z_i||^2}{\epsilon^2}} \hat{b}_i^{(0)}
$$

 \blacktriangleright Update the observation function:

$$
g^{(1)}=\mathcal{g}+\mathcal{b}^{(0)}
$$

KELKA (FELKE) E VOQO

ITERATIVE BIAS ESTIMATION

イロト イ押ト イヨト イヨト OQ \equiv

EXAMPLE 2: LORENZ-63

- \triangleright 3-dimensional chaotic ODE
- \triangleright True Obs:

$$
h(\vec{x}) = h\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} \sin(x_1) \\ x_2 - 6 \\ \cos(x_3) \end{bmatrix}
$$

 \triangleright Guess:

$$
g(\vec{x}) = g\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]
$$

イロト イ団 トイミト イミト・ミニ りんぐ

EXAMPLE 2: LORENZ-63

 OQ

PUTTING THE TWO METHODS TOGETHER

- \triangleright Step 1: Iterative Estimation
	- \triangleright Using historical observations, offline
- \triangleright Step 2: Conditional Estimation
	- \triangleright Use data from step 1 to train RKHS, online

A DIA 4 BIA A BIA DE A POLA

EXAMPLE 3: INTRACELLULAR FROM EXTRACELLULAR

K ロ ▶ K (日) → K ミ > K ミ → S → S → O Q (V

 \equiv OQ

 \triangleright Consider a 7-dim'l model for a column of atmosphere

- **Baroclinic anomaly potential temperatures,** θ_1 **and** θ_2
- **E** Boundary layer anomaly potential temperature, $\theta_{\rho b}$
- \triangleright Vertically averaged water vapor content, *q*
- \triangleright Cloud fractions: congestus f_c , deep f_d , and stratiform f_s
- ► Extrapolate anomaly potential temperature at height z

$$
T(z)=\theta_1\sin(\frac{z\pi}{Z_T})+2\theta_2\sin(\frac{2z\pi}{Z_T}),\quad z\in[0,16]
$$

KELKA (FELKE) E VOQO

Khouider, B., J. Biello, and A. J. Majda, 2010: A stochastic multicloud model for tropical convection.

► Extrapolate anomaly potential temperature at height z

$$
T(z) = \theta_1 \sin(\frac{z\pi}{Z_T}) + 2\theta_2 \sin(\frac{2z\pi}{Z_T}), \quad z \in [0, 16]
$$

Fightness temperature-like quantity at wavenumber- ν

$$
h_{\nu}(x,f) = (1 - f_d - f_s) \Big[(1 - f_c) \big(\theta_{eb} T_{\nu}(0) + \int_0^{z_c} T(z) \frac{\partial T_{\nu}}{\partial z}(z) dz \big) + f_c T(z_c) T_{\nu}(z_c) + \int_{z_c}^{z_d} T(z) \frac{\partial T_{\nu}}{\partial z}(z) dz \Big] \qquad (1) + (f_d + f_s) T(z_d) T_{\nu}(z_d) + \int_{z_d}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) dz,
$$

 \triangleright Setting $f = 0$ is the clear sky model

 \triangleright Weighting functions define RTM at different wavenumbers

K ロ ▶ K (日) → K ミ > K ミ → S → S → O Q (V

 \triangleright Biases at the 16 observed wavenumbers

 OQ

\blacktriangleright Multimodal likelihood functions

イロトイ団 トイミトイモト \equiv OQ

EXAMPLE 4: "SATELLITE-LIKE" OBS (ITERATIVE)

 OQ

B[IASED](#page-9-0) OBS C[ORRECTING](#page-13-0) BIAS WITH T[RAINING](#page-15-0) DATA WITHOUT T[RAINING](#page-22-0) DATA R[ESULTS](#page-28-0)

EXAMPLE 4: "SATELLITE-LIKE" OBS (RKHS)

←ロト (伊) → (ヨ) → (ヨ) \equiv OQ

REFERENCES

http://math.gmu.edu/˜berry/

- ► J. Harlim, T. Berry, Correcting biased observation model error in data assimilation. Monthly Weather Review (2017).
- ► F. Hamilton, T. Berry, T. Sauer, Correcting Observation Model Error in Data Assimilation (preprint).
- ► F. Hamilton, T. Berry, T. Sauer, Tracking intracellular dynamics through extracellular measurements. PloS One (2018).