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Low Dimensional Structure in High Dimensional Data

Example of High Dimensional Data:

Tyrus Berry George Mason University Nonlinear Data Analysis



The Geometric Assumption
Generalized Fourier Basis
Maps between Data Sets

Low Dimensional Structure in High Dimensional Data

The sub-image geometry:
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Overview/Key Points

1. Goal: Learn geometric structure of data

2. Tools: Diffusion Maps and Local Kernels

3. Applications:

I Smooth/Simplify Data

I Understand Nonlinear Relationships

I Feature Identification
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Learning the Geometry of Data

The Geometric Assumption

I Data does not actually fill the high-dimensional data space

−3
−2

−1
0

1
2

3

−2

0

2

−3

−2

−1

0

1

2

3

xy

z

−0.5

0

0.5

−0.5

0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−10
0

10
−20

−10
0

10
20

5

10

15

20

25

30

35

40

45

I Assume data are sampled from a manifold (curved subspace)

I Goal: Represent geometry via Laplacian operator
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Learning the Geometry of Data

Why the Laplacian?

I Key Fact: Laplacian encodes all geometric information

I Laplacian generalizes calculus to manifolds

∆ =
∑
i ,j

1√
|g |
∂i
√
|g |(g−1)ij∂j

I On R2: ∆ = ∂2

∂x2 + ∂2

∂x2

I On a circle: ∆ = ∂2

∂θ2

I On an ellipse: ∆ = 1√
a2 sin2 θ+b2 cos2 θ

∂
∂θ

(
1√

a2 sin2 θ+b2 cos2 θ

∂
∂θ

)
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Learning the Geometry of Data

So how do we find the Laplacian from data?

I Assume data lies on (or at least near) a manifold

I Approximate manifold with graph ⇒ Connect nearby points
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Learning the Geometry of Data

So how do we find the Laplacian from data?

I Problem: Noise and outliers can lead to bridging
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Learning the Geometry of Data

So how do we find the Laplacian from data?

I To prevent bridging we weight the edges

I Edges are given weights K (x , y) = e−
||x−y||2

4ε
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Learning the Geometry of Data

So how do we find the Laplacian from data?

I We have converted our data set to a weighted graph

I Vertices ⇒ Data points {x1, x2, ..., xN}

I Edges ⇒ Pairs of nearest neighbors

I Edge Weights ⇒ K (xi , xj) = e−
||xi−xj ||

2

4ε

I Represented as matrix Kij = K (xi , xj)
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Learning the Geometry of Data

Diffusion Maps: The Key Result

1. Start with the matrix Kij = e−
||xi−xj ||

2

4ε

2. Find the row sums Pi =
∑N

j=1 K (xi , xj)

3. Normalize the matrix K̂ij =
Kij

PiPj

4. Find the row sums again P̂i =
∑N

j=1 K̂ (xi , xj)

5. Normalize again K̃ij =
K̂ij

P̂i

6. Form the Laplacian matrix ∆̃ = I−K̃
ε

Theorem: As N →∞ and ε→ 0 we have ∆̃→ ∆
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Learning the Geometry of Data

Diffusion Maps Construction

K Density P K̂ Bias P̂ ∆̃
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Learning the Geometry of Data

Diffusion Maps Construction

I ∆̃ approximates the
Laplacian ∆

I ∆̃ encodes the geometry
of the data

I Eigenvectors of ∆̃
approximate
eigenfunctions of ∆
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Learning the Geometry of Data

Diffusion Maps for Video Data

Eigenvectors of ∆̃ give a low-dimensional representation:
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Smoothing the Data
Forecasting without a Model

Fourier Basis on Manifolds

I Fourier functions sin(kθ) are eigenfunctions of d2

dθ2

I Eigenvectors of matrix ∆̃ approximate eigenfunctions of ∆

I What is so great about these functions?

I Smoothest possible functions on M

I ϕ0 = constant

I ϕ1 contains a single oscillation

I ϕj is as smooth as possible and orthogonal to all previous
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Fourier Basis on Manifolds
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Smoothing the Data
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Fourier Basis on Manifolds
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Smoothing the Data
Forecasting without a Model

Using Fourier Basis to Smooth the Data

I Use generalized Fourier basis {ϕi} to smooth data

I Project data into the basis:

cj = 〈x , ϕj〉 =
1

N

N∑
k=1

xkϕj(xk)

I Reconstruct smoothed data (low pass filter):

x̃i =
L∑

j=1

cjϕj(xi )
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Smoothing the Data
Forecasting without a Model

Using Fourier Basis to Smooth the Data
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Smoothing the Data
Forecasting without a Model

Using Fourier Basis to Smooth the Data

I Smooths noise:
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Smoothing the Data
Forecasting without a Model

Using Fourier Basis to Smooth the Data

I Smooths out the fine details of the geometry:
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Local Kernels

I A local kernel is a map K : [0,∞)× Rn × Rn → R

K (δ, x , x + δz) < ae−b||z||
2

I Many ad hoc kernel methods exist in data science
I Kernel Principal Component Analysis (KPCA)
I Kernel Support Vector Machines (KSVM)
I Kernel Density Estimation (KDE)
I Spectral Clustering
I Reproducing Kernel Hilbert Spaces (RKHS)

I Almost all kernels in use are local kernels

I Theorem: Every local kernel defines a geometry
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Example: Forecasting without a Model

No Model Perfect Model
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Forecasting without a Model

p(x , t)
Nonparametric Forecast−−−−−−−−−−−−→ p(x , t + τ)y〈p,ϕj〉

x∑
j cjϕjpeq

~c(t)
Alj≡E[〈ϕj ,Sϕl 〉peq ]

−−−−−−−−−−−−−−−−−−→ ~c(t + τ) = A~c(t).

I ~c(t) are the generalized Fourier coefficients of p

I Nonlinear dynamics become linear (matrix A) in this basis
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Learning Nonlinear Maps
Feature Identification

Learning Nonlinear Maps

I Assume we have two data sets {xi}Ni=1 and {yi}Ni=1

I Related by nonlinear map yi = H(xi )

M H−−−−−−−→ H(M)y Φ̃

yΦ

L2(M, g̃) ≈ Rn̂ U−−−−−−−→ L2(H(M), g) ≈ Rm̂

I Φ̃ and Φ are built with Local Kernels

I U is linear ⇒ Easy to fit
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Learning Nonlinear Maps

Tyrus Berry George Mason University Nonlinear Data Analysis



The Geometric Assumption
Generalized Fourier Basis
Maps between Data Sets

Learning Nonlinear Maps
Feature Identification

Feature Identification

Iterated Diffusion Map (IDM) isolates a feature of interest (radius)
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Feature Identification

Feature Identification

Iterated Diffusion Map (IDM) isolates a feature of interest (angle)
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Learning Nonlinear Maps
Feature Identification

Key Points

1. Goal: Learn geometric structure of data

2. Tools: Diffusion Maps and Local Kernels

3. Applications:

I Geometry ⇒ Custom Fourier basis
I Smooth/Simplify data

I Fourier Basis ⇒ Nonlinear relationships become linear
I Forecast operator becomes linear
I Nonlinear maps between data sets become linear

I Understanding Geometry ⇒ Feature identification
I Feature identification via Iterated Diffusion Map (IDM)
I Learn the dimension, volume, and other topological features
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Feature Identification

For more information: http://math.gmu.edu/˜berry/

Building the basis

I Coifman and Lafon, Diffusion maps.

I Berry and Harlim, Variable Bandwidth Diffusion Kernels.

Nonparametric forecast

I Berry, Giannakis, and Harlim, Nonparametric forecasting of
low-dimensional dynamical systems.

I Berry and Harlim, Semiparametric forecasting and filtering:
correcting low-dimensional model error in parametric models.

Nonlinear Maps and Feature Identification

I Berry and Sauer, Local Kernels and the Geometric Structure of
Data.

I Berry and Harlim, Iterated Diffusion Maps for Feature Identification.
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