Nonlinear Data Analysis

Tyrus Berry George Mason University

December 11, 2015

イロン イヨン イヨン イヨン

æ

Collaborators and Sponsors

This presentation includes joint work with:

- ► Tim Sauer, George Mason University
- John Harlim, Penn State
- Dimitris Giannakis, Courant Institute

Work presented here was supported by NSF grant DMS-1250936 and ONR MURI grant N00014-12-1-0912

Low Dimensional Structure in High Dimensional Data

Example of High Dimensional Data:

・ロト ・日本 ・モート ・モート

Low Dimensional Structure in High Dimensional Data

The sub-image geometry:

<ロ> <同> <同> <同> < 同>

Overview/Key Points

- 1. Goal: Learn geometric structure of data
- 2. Tools: Diffusion Maps and Local Kernels

3. Applications:

- Smooth/Simplify Data
- Understand Nonlinear Relationships
- Feature Identification

同 と く ヨ と く ヨ と

Learning the Geometry of Data

The Geometric Assumption

Data does not actually fill the high-dimensional data space

Assume data are sampled from a manifold (curved subspace)

Goal: Represent geometry via Laplacian operator

Learning the Geometry of Data

同 ト イヨ ト イヨト

Why the Laplacian?

- ► Key Fact: Laplacian encodes all geometric information
- Laplacian generalizes calculus to manifolds

$$\Delta = \sum_{i,j} rac{1}{\sqrt{|g|}} \partial_i \sqrt{|g|} (g^{-1})_{ij} \partial j$$

• On
$$\mathbb{R}^2$$
: $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}$

• On a circle:
$$\Delta = \frac{\partial^2}{\partial \theta^2}$$

► On an ellipse:
$$\Delta = \frac{1}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}} \frac{\partial}{\partial \theta} \left(\frac{1}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}} \frac{\partial}{\partial \theta} \right)$$

Learning the Geometry of Data

A ■

So how do we find the Laplacian from data?

- Assume data lies on (or at least near) a manifold
- ► Approximate manifold with graph ⇒ Connect nearby points

Learning the Geometry of Data

A ■

So how do we find the Laplacian from data?

• **Problem:** Noise and outliers can lead to *bridging*

Learning the Geometry of Data

So how do we find the Laplacian from data?

To prevent bridging we weight the edges

• Edges are given weights
$$K(x, y) = e^{-\frac{||x-y||^2}{4\epsilon}}$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

So how do we find the Laplacian from data?

- We have converted our data set to a weighted graph
- Vertices \Rightarrow Data points $\{x_1, x_2, ..., x_N\}$
- Edges \Rightarrow Pairs of nearest neighbors

• Edge Weights
$$\Rightarrow K(x_i, x_j) = e^{-\frac{||x_i - x_j||^2}{4\epsilon}}$$

• Represented as matrix $K_{ij} = K(x_i, x_j)$

Learning the Geometry of Data

Diffusion Maps: The Key Result

- 1. Start with the matrix
- 2. Find the row sums
- 3. Normalize the matrix
- 4. Find the row sums again
- 5. Normalize again
- 6. Form the Laplacian matrix

Theorem: As $N \to \infty$ and $\epsilon \to 0$ we have $\tilde{\Delta} \to \Delta$

$$K_{ij} = e^{-\frac{||x_i - x_j||^2}{4\epsilon}}$$
$$P_i = \sum_{j=1}^{N} \mathcal{K}(x_i, x_j)$$
$$\hat{K}_{ij} = \frac{K_{ij}}{P_i P_j}$$
$$\hat{P}_i = \sum_{j=1}^{N} \hat{\mathcal{K}}(x_i, x_j)$$
$$\tilde{\mathcal{K}}_{ij} = \frac{\hat{K}_{ij}}{\hat{P}_i}$$
$$\tilde{\Delta} = \frac{I - \tilde{\mathcal{K}}}{\epsilon}$$

Learning the Geometry of Data

Diffusion Maps Construction

Tyrus Berry George Mason University

Nonlinear Data Analysis

Learning the Geometry of Data

A⊒ ▶ ∢ ∃

Diffusion Maps Construction

Learning the Geometry of Data

イロト イヨト イヨト イヨト

æ

Diffusion Maps for Video Data

Eigenvectors of $\tilde{\Delta}$ give a low-dimensional representation:

Smoothing the Data Forecasting without a Model

イロト イヨト イヨト イヨト

Fourier Basis on Manifolds

- Fourier functions $sin(k\theta)$ are eigenfunctions of $\frac{d^2}{d\theta^2}$
- \blacktriangleright Eigenvectors of matrix $\tilde{\Delta}$ approximate eigenfunctions of Δ
- What is so great about these functions?
- \blacktriangleright Smoothest possible functions on ${\cal M}$
- $\varphi_0 = \text{constant}$
- φ_1 contains a single oscillation
- φ_j is as smooth as possible and orthogonal to all previous

Smoothing the Data Forecasting without a Model

<ロ> (四) (四) (日) (日) (日)

Fourier Basis on Manifolds

Smoothing the Data Forecasting without a Model

<ロ> (四) (四) (日) (日) (日)

Fourier Basis on Manifolds

Smoothing the Data Forecasting without a Model

Using Fourier Basis to Smooth the Data

- Use generalized Fourier basis $\{\varphi_i\}$ to smooth data
- Project data into the basis:

$$c_j = \langle x, \varphi_j \rangle = \frac{1}{N} \sum_{k=1}^N x_k \varphi_j(x_k)$$

Reconstruct smoothed data (low pass filter):

$$ilde{x}_i = \sum_{j=1}^L c_j \varphi_j(x_i)$$

イロト イヨト イヨト イヨト

Smoothing the Data Forecasting without a Model

イロン イヨン イヨン イヨ

Using Fourier Basis to Smooth the Data

Smoothing the Data Forecasting without a Model

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Using Fourier Basis to Smooth the Data

Smooths noise:

Smoothing the Data Forecasting without a Model

イロン イヨン イヨン イヨン

æ

Using Fourier Basis to Smooth the Data

Smooths out the fine details of the geometry:

Smoothing the Data Forecasting without a Model

- 4 同 6 4 日 6 4 日 6

Local Kernels

• A local kernel is a map $K : [0,\infty) \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$

$$K(\delta, x, x + \delta z) < ae^{-b||z||^2}$$

Many ad hoc kernel methods exist in data science

- Kernel Principal Component Analysis (KPCA)
- Kernel Support Vector Machines (KSVM)
- Kernel Density Estimation (KDE)
- Spectral Clustering
- Reproducing Kernel Hilbert Spaces (RKHS)
- Almost all kernels in use are local kernels
- Theorem: Every local kernel defines a geometry

Smoothing the Data Forecasting without a Model

Example: Forecasting without a Model

No Model

Perfect Model

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Smoothing the Data Forecasting without a Model

イロン イヨン イヨン イヨン

Forecasting without a Model

- $\vec{c}(t)$ are the generalized Fourier coefficients of p
- Nonlinear dynamics become linear (matrix A) in this basis

Learning Nonlinear Maps Feature Identification

イロト イヨト イヨト イヨト

Learning Nonlinear Maps

- Assume we have two data sets $\{x_i\}_{i=1}^N$ and $\{y_i\}_{i=1}^N$
- Related by nonlinear map $y_i = \mathcal{H}(x_i)$

• U is linear \Rightarrow Easy to fit

Learning Nonlinear Maps Feature Identification

Learning Nonlinear Maps

Tyrus Berry George Mason University Nonlinear Data Analysis

Learning Nonlinear Maps Feature Identification

・ロト ・回ト ・ヨト

Feature Identification

Iterated Diffusion Map (IDM) isolates a feature of interest (radius)

Learning Nonlinear Maps Feature Identification

・ロト ・回 ・ ・ ヨ ・

Feature Identification

Iterated Diffusion Map (IDM) isolates a feature of interest (angle)

Learning Nonlinear Maps Feature Identification

Key Points

- 1. Goal: Learn geometric structure of data
- 2. Tools: Diffusion Maps and Local Kernels
- 3. Applications:
 - ► **Geometry** ⇒ Custom Fourier basis
 - Smooth/Simplify data
 - $\blacktriangleright \ \ \, \textbf{Fourier Basis} \Rightarrow \text{Nonlinear relationships become linear}$
 - Forecast operator becomes linear
 - Nonlinear maps between data sets become linear
 - ► Understanding Geometry ⇒ Feature identification
 - Feature identification via Iterated Diffusion Map (IDM)
 - Learn the dimension, volume, and other topological features

<ロ> (四) (四) (三) (三) (三)

For more information: http://math.gmu.edu/~berry/

Building the basis

- Coifman and Lafon, *Diffusion maps.*
- Berry and Harlim, Variable Bandwidth Diffusion Kernels.

Nonparametric forecast

- Berry, Giannakis, and Harlim, Nonparametric forecasting of low-dimensional dynamical systems.
- Berry and Harlim, Semiparametric forecasting and filtering: correcting low-dimensional model error in parametric models.

Nonlinear Maps and Feature Identification

- Berry and Sauer, Local Kernels and the Geometric Structure of Data.
- Berry and Harlim, Iterated Diffusion Maps for Feature Identification.

・ロン ・回 と ・ ヨ と ・ ヨ と …