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Problem Statement

Linear Example: Consider a two-dimensional system of SDEs,

dx = (a11x + a12y) dt + σxdWx ,

dy = 1
ε (a21x + a22y) dt +

σy√
ε
dWy ,

I Given noisy observations zm = x(tm) + εm, εm ∼ N (0,R)
the filtering problem is to estimate the posterior density
p(x(tm), y(tm) | z1, z2, ..., zm).

I Given the full model above, the Kalman filter gives the
optimal posterior estimate, in the sense of minimum variance.

I Now assume the fast variable is unknown and we only have an
averaged model dX = αXdt + σdWx for the slow variable.

I Can we recover p(x(tm) | z1, z2, ..., zm) as accurately as the
full model?
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Motivation for the Reduced Model

Linear Example: Consider a two-dimensional system of SDEs,

dx = (a11x + a12y) dt + σxdWx ,

dy = 1
ε (a21x + a22y) dt +

σy√
ε
dWy ,

Want best parameters in reduced model: dX = αXdt + σdWx

Standard approach applies averaging theory to find reduced model

dX = ãXdt + σxdWx ,

where ã = a11 − a12a−122 a21. This is an O(
√
ε) closure.

The Reduced Stochastic Filter (RSF) uses the Kalman filter
with the averaged model.
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Numerical Results: Model Error with RSF.
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Understanding covariance inflation

Gottwald & Harlim made the following O(ε) closure rigorous.

dx = (a11x + a12y) dt + σxdWx ,

dy =
1

ε
(a21x + a22y) dt +

σy√
ε

dWy ,

Rewrite the fast equation as follows

y = −a21
a22

x −
√
ε
σx
a22

Ẇy +O(ε)

and substitute it to the slow equation and ignore the O(ε)-term,
we obtain

dX̃ = ãX̃ dt + σxdWx−
√
εσy

a12
a22

dWy .

Remarks: This closure approach is known as the stochastic
invariant manifold theory (Fenichel 1979, Boxler 1989).



Numerical Results: RSF with additive covariance inflation
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Improved mean estimates, but the covariance estimates are still
underestimated for large ε!



New approach: Asymptotic expansion of the filter (not the model).

The full model steady-state filter covariance Ŝ solves,

AεŜ + ŜA>ε + ŜG>R−1G Ŝ + Qε = 0.

Solving for ŝ11 and expanding in ε we have:

−
(

1 + 2εâ

R

)
ŝ211 + 2ã (1 + εâ) ŝ11 +

(
σ2x + εσ2y

a212
a222

)
+O(ε2) = 0

The reduced model has steady state covariance solution, s̃, that
satisfies the 1D Riccati equation,

− s̃2

R
+ 2αs̃ + σ2 = 0.

Find parameters {α, σ} such that s̃ = ˆs11 +O(ε2)!
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Theorem (Manifold of Parameters, BH2013)

Let ŝ11 be the first diagonal component of the 2D algebraic Riccati
equation associated with the true filter and let s̃ be the solution of
one-dimensional Ricatti equation associated with the reduced filter.
Then limε→0

s̃−ŝ11
ε = 0 if and only if

σ2 = 2(α− ã(1− εâ))ŝ11 + σ2x(1− 2εâ) + εσ2y
a212
a222

+O(ε2). (1)

Remarks: For any parameters on the manifold (1), the reduced
filter mean estimate solves,

dx̃ = αx̃ dt +
s̃

R
(dz − x̃ dt),

while the true filter mean estimate for x-variable solves,

dx̂ = GAε(x̂ , ŷ)> dt +
ŝ11
R

(dz − x̂ dt).

Impose consistency between the actual error covariance, E(e2),
where e ≡ x̃ − x , and s̃ to obtain a unique {α, σ} in the manifold.
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Optimal Reduced Stochastic Filter

Theorem (Existence and Uniqueness, BH2013)

There exists a unique optimal reduced filter given by the following
prior model,

dX̃ = (ã− εãâ)X̃ dt + σx(1− εâ)dWx −
√
εσy

a12
a22

dWy , (2)

where ã = a11 − a12a21a−122 < 0 and â = a12a21a−222 . The optimality
is in the sense that, both the mean and covariance estimates
converges uniformly to the corresponding estimates from the true
filter, with convergence rate on the order of ε2.

Remark: So, if {x̃ , s̃} are the solutions of the reduced filter in (2)
and {x̂ , ŝ11} are the solutions of the perfect model, there exists
tim-independent constants C1,C2, such that

|ŝ11(t)− s̃(t)| ≤ C1ε
2,

E(|x̂(t)− x̃(t)|2) ≤ C2ε
4.
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Remarks:

I Notice that for optimal 1D-filter, the MSE (left)
approximately equal to the Covariance estimate (right).
We call a filter consistent when the actual error of the mean
estimate matches the filtered covariance estimates.

I Optimal solutions are always consistent, but consistent
solutions are not necessarily optimal.
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Remarks:

I Notice that for optimal 1D-filter, the MSE (left)
approximately equal to the Covariance estimate (right).
We call a filter consistent when the actual error of the mean
estimate matches the filtered covariance estimates.

I Optimal solutions are always consistent, but consistent
solutions are not necessarily optimal.



Summary (Linear Example):

I Model error creates inconsistency in the filtered statistical
estimates.

I For linear problems there exists a unique reduced model for
the slow variables which gives optimal mean and covariance
estimates.

I Finding the reduced model requires imposing consistency on
the filter mean and covariance estimates.

I The reduced model includes correction terms in the form of a
linear damping and an additive stochastic forcing.

I For general nonlinear filtering problems, it is impractical to
find the unique reduced model since it requires imposing
consistency on higher-order moments.

I A simple test case shows that general nonlinear problems
require multiplicative noise.
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Nonlinear Filtering Problems

Consider the following prototype continuous-time filtering problem,

dx = f1(x , y ; θ)dt + σx(x , y ; θ) dWx ,

dy =
1

ε
f2(x , y ; θ)dt +

σy (x , y ; θ)√
ε

dWy ,

dz = h(x) dt +
√

RdV .

The true filter solutions are characterized by conditional
distribution p(x , y , t|zτ , 0 ≤ τ ≤ t), which satisfies the Kushner
equation (1964):

dp = L∗p dt + p(h − E[h])>R−1(dz − E[h] dt),

Practical issues:

I We have no access to p for nonlinear problems (SPDE).

I Nonlinearity causes the covariance solutions to depend on
higher-order moments and to not equilibrate.
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Nonlinear Filtering Problems

Our strategy:

I Do not look for the unique reduced filter since it will require
knowledge and consistency of all higher-order moments.

I Pick a simple nonlinear test problem and consider the first two
moments of the posterior distribution, p.

I Apply a Gaussian closure to the evolution of these moments.

I Find parameters in a reduced model ansatz by matching the
first and second moments of the filtered solutions of perfect
model and the reduced models.

I Due to Gaussian closure, even the perfect model may not
produce consistent statistics.

I We introduce a consistency metric to determine the
performance of the covariance estimate.



Empirical Consistency measure

Definition (Consistency of Covariance)

Let x̃(t) and S̃(t) be a realization of the solution to a filtering
problem for which the true signal of the realization is x(t). The
consistency of the realization is defined to be,

C(x , x̃ , S̃) = 〈‖x − x̃ ||2
S̃
〉 =

1

n
〈(x(t)− x̃(t))>S̃(t)−1(x(t)− x̃(t))〉.

We say that a filter is consistent if C = 1 almost surely
(independent of the realization).

Remarks:

I Consistency does not imply accurate filter.

I A consistency filter with a good estimate of posterior mean
has a good estimate of posterior covariance.
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Nonlinear Test model

Consider [Gershgorin, Harlim, Majda 2010]:

du

dt
= −(γ̃ + λu)u + b̂ + b̃ + f (t) + σuẆu,

db̃

dt
= −λb

ε
b̃ +

σb√
ε

Ẇb,

d γ̃

dt
= −λγ

ε
γ̃ +

σγ√
ε

Ẇγ ,

Using the same strategy as for the linear model, we perform
asymptotic expansion on the solutions of the optimal filter.

A detailed computation proves that the optimal reduced filter
requires both additive and multiplicative noise.
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Continuous-time reduced SPEKF filter:

Theorem (Existence, BH13)

Let λu > 0, and observations of the full nonlinear test model,
dz = u dt +

√
RdV . Given identical initial statistics, ũ(0) = û(0)

and S̃(0) = Ŝ(0) > 0, the mean and covariance estimates of a
stable continuous-time reduced SPEKF

dU = −αUdt + βU ◦ dWγ + σ1dWu + σ2dWb,

with parameters

{α = λu, β
2 =

εσ2
γ

λγ(λuε+λγ)
, σ21 = σ2u, σ

2
2 =

εσ2
b

2λb(λb+ελu)
} agree with

mean and covariance of a stable continuous-time SPEKF for
variable u uniformly, with convergence rate of order-ε.
Furthermore, the reduced filtered solutions are also consistent, up
to order-ε.

Remarks: Loss an order of ε accuracy due to multiplicative noise.
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variable u uniformly, with convergence rate of order-ε.
Furthermore, the reduced filtered solutions are also consistent, up
to order-ε.

Remarks: Loss an order of ε accuracy due to multiplicative noise.



Numerical solutions in the turbulent transfer energy regime
with ε = 1.
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Numerical solutions in the turbulent transfer energy regime
with ε = 1.
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Numerical Solutions for the nonlinear test filtering
problems in a regime that mimics dissipative range
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Consistent Filter

Based on these results, we propose the following ansatz,(
− αxi +

N∑
j=1

σijẆj +
N∑
j=1

βij ◦ xj V̇j

)
as a stochastic parameterization for model error.



Example: Strategy for filtering with model errors

Consider the two-layer Lorenz-96 model,

dxi
dt

= xi−1(xi+1 − xi−2)− axi + F +
hx

M

M∑
j=1

yi ,j ,

ε
dyi ,j
dt

= yi ,j+1(yi ,j−1 − yi ,j+2)− yi ,j + hyxi ,

where x = x(t) ∈ RN and y = y(t) ∈ RNM and the subscript i is
taken modulo N and j is taken modulo M.

Proposed Reduced Filter Model:

dxi
dt

= xi−1(xi+1 − xi−2)− axi + F

+
(
− αxi +

N∑
j=1

σijẆj +
N∑
j=1

βij ◦ xj V̇j

)
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Details of the Simulation

I N = 9 slow variables, M = 8 implies 72 fast variables.

I Data generated from the 81-dimensional two-layer L96 model.

I The 9 slow variables are observed with Gaussian noise.

I Ensemble Kalman Filter (EnKF) with each model.

I Parameters α and σ are fit from the data.

I We measure the performance of the mean estimate (RMSE).

I We consistency to measure the accuracy of the covariance
estimate.

I Consistency > 1 =⇒ Underestimating covariance.

I Consistency < 1 =⇒ Overestimating covariance.



Numerical results (x ∈ R9, y ∈ R72)
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RDF = Reduced Deterministic Filter (α = β = σ = 0)
RDFD = Reduced Deterministic Filter with damping (β = σ = 0)
RSFA = Reduced Stochastic Filter with additive noise (α = β = 0)
RSFAD = Reduced Stochastic Filter with damping and additive
noise (β = 0)
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