Intro	Manifold Learning	Graph Constructions	Applications	Conclusion	Extras
000000	000000000000000000000000000000000000000	000	00000000000	0000	00000000

Learning manifolds from data

Tyrus Berry

Mathematics Colloquium GMU Feb. 24, 2017

Postdoctoral position supported by NSF

Graph Constructions

Applications

Conclusion

Extras 00000000

MOTIVATING EXAMPLE: NEMATIC LIQUID CRYSTAL

Video provided by Rob Cressman, Krasnow Institute, GMU

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

FINDING HIDDEN STRUCTURE IN DATA

Extras

APPLICATIONS

PARAMETRIC MODELING

- Model error:
 - Trade off resolution and complexity
 - Stationarity/Homogeneity of parameters
- Assimilate Data: Fit Parameters/Variables
 - Lumps together noise and model error

PARAMETRIC MODELING

- Model error:
 - Trade off resolution and complexity
 - Stationarity/Homogeneity of parameters
- Assimilate Data: Fit Parameters/Variables
 - Lumps together noise and model error

DATA ASSIMILATION

- Estimate state/parameters from noisy observations
- EnKF requires noise covariances (unknown)
- Adaptive data assimilation
 - Estimates covariances, compensates for model error
 - ► Extends (Mehra 1970,1972) to nonlinear systems

Hamilton, Berry, Peixoto, Sauer (PRE, 2013) Berry & Sauer (Tellus A, 2013) Berry & Harlim (Proc. Royal Society A, 2014) Hamilton, Berry, & Sauer (Physical Review X, 2016) Harlim & Berry (Monthly Weather Review, in review)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

NONPARAMETRIC MODELING

- ▶ **Tools:** For functions $f \in H$ determined by values $\vec{f}_i = f(x_i)$
 - Interpolate: $f(x) = \sum_{j} \langle f, \varphi_j \rangle \varphi_j(x)$
 - Quadrature: $\langle f, \varphi_i \rangle \approx \sum_i f(x_i) \varphi(x_i)$
 - Operator Representation: $\mathbf{A}_{jk} = \left\langle \varphi_j, \mathcal{A}\varphi_k \right\rangle$
- All require a basis $\{\varphi_i\}!$

Intro	MANIFOLD LEARNING	Graph Constructions	APPLICATIONS	Conclusion	Extras
000000	•00000000000000000000	000	00000000000	0000	00000000

ROADMAP

- What is manifold learning? \Rightarrow Estimate Laplacian, Δ
- How to find the Laplacian? \Rightarrow Graph Laplacian, L
- \blacktriangleright Convergence $\textbf{L} \rightarrow \Delta$ and overcoming limitations
- ► Key result: Extension to non-compact manifolds
- New graph construction based on key result (TDA)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Applications and future directions

WHAT IS MANIFOLD LEARNING?

- ▶ Geometric prior: Data on Riemannian manifold $\mathcal{M} \subset \mathbb{R}^m$
- Goal: Represent all the information about a manifold
- A smooth embedded manifold $\mathcal{M} \subset \mathbb{R}^m$ inherits:
 - A metric tensor $g_x : T_x \mathcal{M} \times T_x \mathcal{M} \to \mathbb{R}$ (inner product)
 - g completely determines the geometry of \mathcal{M}
 - A volume form $dV(x) = \sqrt{\det(g_x)} dx^1 \wedge \cdots \wedge dx^d$
- Laplace-Beltrami operator, Δ , is equivalent to g

•
$$\Delta f = \operatorname{div} \circ \nabla = \frac{1}{\sqrt{|g|}} \partial_i g^{ij} \sqrt{|g|} \partial_j f$$

• $g(\nabla f, \nabla h) = \frac{1}{2}(f\Delta h + h\Delta f - \Delta(fh))$

WHAT IS MANIFOLD LEARNING?

- ► Manifold learning ⇔ Estimating Laplace-Beltrami
- ► Hodge theorem:

Eigenfunctions $\Delta \varphi_i = \lambda_i \varphi_i$ orthonormal basis for $L^2(\mathcal{M}, g)$

Smoothest functions: φ_i minimizes the functional

$$\lambda_{i} = \min_{\substack{f \perp \varphi_{k} \\ k=1,\dots,i-1}} \left\{ \frac{\int_{\mathcal{M}} ||\nabla f||^{2} \, dV}{\int_{\mathcal{M}} |f|^{2} \, dV} \right\}$$

- ► Eigenfunctions of △ are custom Fourier basis
 - ► Smoothest orthonormal basis for L²(M, g)
 - Can be used to define wavelet frame
 - \blacktriangleright Define the Sobolev spaces on ${\cal M}$

Extras

HARMONIC ANALYSIS ON MANIFOLDS

<ロ> < 団> < 豆> < 豆> < 豆> < 豆> < 豆</p>

HARMONIC ANALYSIS ON MANIFOLDS

<ロ> < 団> < 豆> < 豆> < 豆> < 豆> < 豆</p>

- Assume data lies on (or at least near) a manifold
- ► Approximate manifold with graph ⇒ Connect nearby points

Problem: Noise and outliers can lead to bridging

- To prevent bridging we weight the edges
- Edges are given weights $K_{\delta}(x, y) = e^{-\frac{||x-y||^2}{4\delta^2}}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Data set \Rightarrow weighted graph
- Edge Weights defined by a kernel function

$$\mathcal{K}_{\delta}(x_i, x_j) = e^{-rac{||x_i - x_j||^2}{4\delta^2}}$$

- Bandwidth δ determines localization
- 'Adjacency' matrix: $\mathbf{K}_{ij} = K(x_i, x_j)$

• 'Degree' matrix:
$$\mathbf{D}_{ii} = \sum_{j} \mathbf{K}_{ij}$$

• Normalized graph Laplacian: $\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1}\mathbf{K}$

Graph Constructions

Applications

Conclusion

Extras 00000000

POINTWISE CONVERGENCE

Theorem: (Belkin & Niyogi, 2005, Singer, 2006) For $\{x_i\}_{i=1}^N \subset \mathcal{M} \subset \mathbb{R}^m$ uniformly sampled on a compact manifold and for $\vec{f}_i = f(x_i)$ where $f \in C^3(\mathcal{M})$

$$\frac{1}{\delta^2} \left(\mathbf{L} \vec{f} \right)_i = \Delta f(x_i) + \mathcal{O} \left(\delta^2, \frac{1}{N^{1/2} \delta^{1+d/2}} \right)$$

 $\delta =$ bandwidth N = number of points

RESTRICTIONS THAT HAVE BEEN OVERCOME TO DEAL WITH REAL DATA:

- ► Arbitrary sampling (Coifman & Lafon, 'Diffusion maps', ACHA 2006)
- ► Non-compact manifolds (Berry & Harlim, ACHA 2015)
- ► Other kernel functions (Thesis 2013; Berry & Sauer, ACHA 2015)
- Boundary (Coifman & Lafon, ACHA 2006; Berry & Sauer, J. Comp. Stat. 2016)
- ► Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry & Sauer, submitted)

RESTRICTIONS THAT HAVE BEEN OVERCOME TO DEAL WITH REAL DATA:

- Arbitrary sampling (Coifman & Lafon, 'Diffusion maps', ACHA 2006)
- ► Non-compact manifolds (Berry & Harlim, ACHA 2015)
- ► Other kernel functions (Thesis 2013; Berry & Sauer, ACHA 2015)
- Boundary (Coifman & Lafon, ACHA 2006; Berry & Sauer, J. Comp. Stat. 2016)
- ► Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry & Sauer, submitted)

Intro	MANIFOLD LEARNING	Graph Constructions	APPLICATIONS	Conclusion	Extras
000000	000000000000000000000000000000000000000	000	00000000000	0000	00000000

LOCAL KERNELS

► A *local kernel* has exponential decay:

$$\mathcal{K}_{\delta}(x, x + \delta y) < c_1 e^{-c_2 ||y||^2}$$

- Theorem: Symmetric local kernels converge to Laplacians
 - Every local kernel determines a geometry
 - Every geometry accessible by a local kernel
- Explain success of 'kernel methods' in data science:
 - KPCA: Kernel Principal Component Analysis
 - KSVM: Kernel Support Vector Machines
 - ► KDE: Kernel Density Estimation
 - RKHS: Reproducing Kernel Hilbert Spaces
 - Spectral Clustering (KPCA)

RESTRICTIONS THAT HAVE BEEN OVERCOME TO DEAL WITH REAL DATA:

- Arbitrary sampling (Coifman & Lafon, 'Diffusion maps', ACHA 2006)
- ► Non-compact manifolds (Berry & Harlim, ACHA 2015)
- ► Other kernel functions (Thesis 2013; Berry & Sauer, ACHA 2015)
- Boundary (Coifman & Lafon, ACHA 2006; Berry & Sauer, J. Comp. Stat. 2016)
- ► Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry & Sauer, submitted)

TANGIBLE MANIFOLDS

- Compute ambient distance $||x y||_{\mathbb{R}^m}$
- Need localization in $d_{\mathcal{I}}(x, y) = \inf_{\gamma} \left\{ \int_{0}^{1} |\gamma'(t)| dt \right\}$
- ► Assume ratio $R(x, y) = \frac{||x-y||_{\mathbb{R}^m}}{d_{\mathcal{I}}(x, y)}$ bounded away from zero
- We will use the exponential map to change variables
- Assume injectivity radius inj(x) bounded away from zero

Definition: A manifold is uniformly tangible if there are lower bounds on inj(x) and $inf_{y \in M} R(x, y)$ independent of x

CONSISTENCY PART 1

Matrix times vector converges to integral operator:

$$\left(\mathbf{K}\vec{f}\right)_{i} = \sum_{j=1}^{N} \mathcal{K}_{\delta}(x_{i}, x_{j}) f(x_{j}) \xrightarrow{N \to \infty} \int_{\mathcal{M}} \mathcal{K}_{\delta}(x_{i}, y) f(y) \, dV(y)$$

- ► Assume kernel has fast decay: K_δ(x, y) < e^{-||x-y||²/δ²}
- ► Localize integral, requires $R(x_i, y) = \frac{||x_i y||}{d_l(x_i, y)} > 0$

$$\left(\mathbf{K}\vec{f}\right)_{i} \rightarrow \int_{\mathcal{M}\cap \exp_{x_{i}}(B_{\delta}(0))} K_{\delta}(x_{i}, y) f(y) \, dV(y) + \mathcal{O}(\delta^{k})$$

• Change variables to the tangent space $y = \exp_{x_i}(s)$:

$$\left(\mathbf{K}\vec{f}\right)_{i} \rightarrow \int_{B_{\delta}(0)} K_{\delta}(x_{i}, \exp_{x_{i}}(s)) f(\exp_{x_{i}}(s)) ds + \mathcal{O}(\delta^{k})$$

► Requires injectivity radius $inj(x_i) > \delta > 0$

CONSISTENCY PART 2

Taylor expansion in normal coordinates:

$$f(\exp_x(s)) = f(x) + \nabla f(x) \cdot s + \frac{1}{2} s^{\top} H(f \circ \exp_x)(0)s$$

► Symmetric kernel ⇒ Odd terms integrate to zero

$$\begin{split} \left(\mathbf{K}\vec{f}\right)_{i} &\to \int_{||s|| < \delta} \left(K\left(||s||\right) + \mathcal{O}(\delta^{2}s_{i}^{4})K'(||s||)/||s|| \right) \cdot \\ & \left(f(x_{i}) + \delta\nabla f(x_{i}) \cdot s + \frac{\delta^{2}}{2}s^{\top}H(f \circ \exp_{x_{i}})(0)s) \right) \, ds + \mathcal{O}(\delta^{4}) \\ &= f(x_{i}) + m\delta^{2}(f(x_{i})\omega(x) + \Delta f(x_{i})) + \mathcal{O}(\delta^{4}) \end{split}$$

-

Sac

- Normalize: $\mathbf{D}^{-1}\mathbf{K}\vec{f} = \frac{\mathbf{K}\vec{f}}{\mathbf{K}\vec{1}} \rightarrow \vec{f} + m\delta^2 \overrightarrow{\Delta f} + \mathcal{O}(\delta^4)$
- ► Consistency: $\frac{1}{m\delta^2} (\mathbf{D}^{-1}\mathbf{K} \mathbf{I})\vec{f} \rightarrow \overrightarrow{\Delta f} + \mathcal{O}(\delta^2)$

CONSISTENCY IS NOT ENOUGH!

• Extend to arbitrary sampling $x_i \sim q$ (Coifman & Lafon)

► Variance:
$$\mathbb{E}[((L\vec{f})_i - \Delta f(x_i))^2] = \mathcal{O}\left(\frac{q(x_i)^{3-4d}}{N\delta^{2+d}}\right)$$

- ► Negative exponent: 3 4d < 0</p>
- As density q approaches zero the variance blows up!

Solution: Variable bandwidth

Berry and Harlim (ACHA, 2015)

APPLICATIONS C

Conclusion 0000 Extras 00000000

VARIABLE BANDWIDTH KERNELS

We introduced the variable bandwidth kernel:

$$\mathcal{K}_{\delta,eta}(\pmb{x},\pmb{y}) = \mathcal{K}\left(rac{||\pmb{x}-\pmb{y}||}{\delta\sqrt{\pmb{q}(\pmb{x})^eta}\pmb{q}(\pmb{y})^eta}
ight)$$

Theorem (Berry and Harlim, ACHA, 2015):

$$\mathbf{L}_{\delta,\alpha,\beta}\vec{f} = \Delta f + c_1 \nabla f \cdot \nabla \log q + \mathcal{O}\left(\delta^2, \frac{q^{-c_2}}{\sqrt{N}h^{1+d/2}}\right)$$

- Operator defined by: $c_1 = 2 2\alpha + d\beta + 2\beta$
- ► Variance determined by: $c_2 = 1/2 2\alpha + 2d\alpha + d\beta/2 + \beta$

Graph Constructions

Applications

Conclusion

Extras 00000000

EXAMPLE: VARIABLE BANDWIDTH KERNEL

Gaussian data: Brownian motion in quadratic potential

SUMMARY OF MANIFOLD LEARNING

- ► Manifold learning ⇔ Estimating Laplace-Beltrami
- ► Can estimate Laplace-Beltrami with a graph Laplacian
- ► For a non-compact manifold:
 - Manifold must be tangible
 - Requires a variable bandwidth kernel
- My other contributions:
 - Access any desired geometry (local kernels)
 - Manifolds with boundary
 - Spectral convergence

APPLICATIONS 00000000000

Conclusion Ex

Extras 00000000

CONTINUOUS K-NEAREST NEIGHBORS (CKNN)

Building unweighted graphs from data (TDA)

CkNN Graph: Edge
$$\{x, y\}$$
 added if $\frac{||x-y||}{\sqrt{||x-x_k||} ||y-y_k||} < \delta$

- $x_k = k$ -th nearest neighbor of x
- Unnormalized graph Laplacian: $L_{un} = D K$
- Corollary: $\mathbf{L}_{un}\vec{f} \rightarrow \overrightarrow{\Delta_{\tilde{g}}f}$ where $(\tilde{g} = q^{2/d}g, d\tilde{V} = q dV)$
- ▶ New result: Spectral convergence $L_{un} \rightarrow \Delta_{\tilde{g}}$
- Consistency of CkNN clustering:
 - Conn. comp. of graph \Leftrightarrow Kernel of L_{un}
 - Conn. comp. of $\mathcal{M} \Leftrightarrow$ Kernel of $\Delta_{\tilde{g}}$ (Hodge theorem)

(Berry & Harlim (ACHA, 2015); Berry & Sauer (in review)

Graph Constructions

APPLICATIONS

Conclusion

Extras 00000000

Sac

CKNN YIELDS IMPROVED GRAPH CONSTRUCTION

2D Gaussian with annulus removed:

Persistent vs. consistent homology

CkNN

I = 1 + 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I = 1
 I =

Small bandwidth

Large bandwidth

Graph Constructions

APPLICATIONS

Conclusion

Extras 00000000

IMPROVED CLUSTERING USING CKNN

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

NONPARAMETRIC MODELING

- ► Tools: Geometry and Harmonic/Functional Analysis
 - Interpolate: $f(x) = \sum_{j} \langle f, \varphi_j \rangle \varphi_j(x)$
 - Quadrature: $\langle f, \varphi_i \rangle \approx \sum_i f(x_i) \varphi(x_i)$
 - Operator Representation: $\mathbf{A}_{jk} = \langle \varphi_j, \mathcal{A}\varphi_k \rangle$
- All require a basis $\{\varphi_i\}!$

DIFFUSION FORECAST

- Autonomous SDE: $dx = a(x) dt + b(x) dW_t$
- Density solves Fokker-Planck PDE: $\frac{\partial}{\partial t} p = \mathcal{L}^* p$
- ► Shift map: $S(f)(x_i) = f(x_{i+1})$ estimates $\mathbb{E}[S(f)] = e^{\tau \mathcal{L}} f$
- $\vec{c}(t)$ are the custom Fourier coefficients of p

Berry and Harlim (SIAM J. Uncertainty Quantification, 2014) Berry, Harlim, and Giannakis (Physical Review E, 2015)

Manifold learning \Rightarrow custom 'Fourier' basis

• **Optimal basis:** Minimum variance $A_{lj} \equiv \mathbb{E}[\langle \varphi_j, S\varphi_l \rangle_q]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Graph Constructions

APPLICATIONS

Conclusion

Extras 00000000

DIFFUSION FORECAST EXAMPLE

No Model

Perfect Model

Berry, Harlim, and Giannakis (PRE, 2015)

APPLICATIONS C

Conclusion

Extras 00000000

FORECASTING THE EL NIÑO INDEX

Sea surface temperatures (SST) in the Niño indices:

Index: 3-month running average SST anomaly

Graph Constructions

APPLICATIONS

Conclusion

Extras 00000000

FORECASTING THE EL NIÑO INDEX

Chekrouna, Kondrashov, and Ghil, PNAS 2011,108,no.29

Diffusion Forecast

Berry, Harlim, and Giannakis (PRE, 2015)

Graph Constructions

onclusion

Extras 00000000

YOUR 13-MONTH FORECAST

 Graph Constructions

APPLICATIONS

Conclusion

Extras 00000000

SEMIPARAMETRIC MODELING

- Data becomes part of the model:
 - Start with imperfect parametric model
 - Assimilate data (adaptive), collect residual errors
 - Build nonparametric model for the residuals

SEMIPARAMETRIC FORECAST MODEL

- Partially known model $\dot{x} = f(x, \theta)$
- No equations for θ!
- Apply the Diffusion Forecast to $p(\theta, t)$
- ► Sample $\theta^k(t) \sim p(\theta, t)$ and pair with ensemble $x^k(t)$

$$\begin{array}{ccc} (x^{k}(t),\theta^{k}(t)) & \xrightarrow{\dot{x}=f(x,\theta)} & (x^{k}(t+\tau),\theta^{k}(t+\tau)) \\ & & \uparrow \\ \theta^{k}(t) & & \uparrow \\ p(\theta,t) & --\frac{\mathsf{Diffusion}}{\mathsf{Forecast}} \longrightarrow & p(\theta,t+\tau) \end{array}$$

Berry and Harlim (J. Computational Physics, 2016)

EXAMPLE: 40-DIMENSIONAL LORENZ-96 SYSTEM DRIVEN BY LORENZ-63

$$\dot{x}_i = \frac{\theta}{x_{i-1}}x_{i+1} - x_{i-1}x_{i-2} - x_i + 8$$

Berry and Harlim (J. Computational Physics, 2016)

Extras

MANIFOLD LEARNING Graph Constructions

INTRO

APPLICATIONS

Conclusion

Extras 00000000

EXAMPLE: 40-DIMENSIONAL LORENZ-96 SYSTEM DRIVEN BY LORENZ-63

Berry and Harlim (J. Computational Physics, 2016)

- FUTURE DIRECTION #1: FEATURE MAPS
 - \blacktriangleright Want to represent map $\mathcal{H}:\mathcal{M}\rightarrow\mathcal{N}$
 - ▶ For \mathcal{H} a diffeomorphism: pull-back metric
 - Otherwise: Apply the Iterated Diffusion Map (IDM)

Graph Constructions

APPLICATIONS

Conclusion

0000

Extras

$$rac{dg}{dt} = rac{1}{2} \left((D\mathcal{H}^{ op} D\mathcal{H} - I)g + g(D\mathcal{H}^{ op} D\mathcal{H} - I)
ight)$$

• Example:
$$\mathcal{H}(x, y) = \sqrt{x^2 + y^2}$$

Berry & Sauer, (ACHA, 2015) Berry & Harlim (ACHA, 2016)

MANIFOLD LEARNING

INTRO

FUTURE DIRECTION #2: CONSISTENCY OF TOPOLOGICAL DATA ANALYSIS (TDA)

- ► Topological Consistency: VR homology \rightarrow $H_k(\mathcal{M})$
- ► Spectral convergence proves consistency of *H*₀(*M*)
- Discrete Exterior Calculus (DEC):
 - TDA uses simplicial complexes to compute homology
 - Weighted simplices correspond to differential forms
 - Kernel on simplices can define Laplacians on forms
 - Which kernels recover the Laplace de-Rham operator?
- Smooth Exterior Calculus (SEC):
 - Start with the smooth eigenfunctions $\Delta \varphi_i = \lambda_i \varphi_i$
 - Define a frame for 1-forms: $b^{ij} = \varphi_i d\varphi_j \varphi_j d\varphi_i$
 - Define Laplace-de Rham operators on b^{ij}

FUTURE DIRECTION #3: SMOOTHNESS PRIORS

- Manifold learning suffers from the curse-of-dimensionality
 - ► Bias-squared: O(δ⁴)
 - Variance: $\mathcal{O}(N^{-1}\delta^{-2-d})$
 - Optimal bandwidth: $\delta = \mathcal{O}(N^{-1/(6+d)})$
 - Minimal Error: $\mathcal{O}(N^{-2/(6+d)})$
- Richardson Extrapolation: Combine multiple δ's
 - ► Reduces bias to O(δ^{2k})
 - Increases variance by a constant
 - Requires \mathcal{M} to be C^k
- 'Solves' curse-of-dimensionality by assuming smoothness
- 5000 points
- 10-dim torus
- ► In ℝ²⁰

Intro	Manifold Learning	Graph Constructions	APPLICATIONS	Conclusion	Extras
000000	000000000000000000000000000000000000000	000	00000000000	0000	00000000

SUMMARY

- ► Manifold learning ⇔ Estimating Laplace-Beltrami
- ► Can estimate Laplace-Beltrami with a graph Laplacian
- Need an appropriate kernel (variable bandwidth)
- Results imply better method for graph construction (CkNN)
- Spectral convergence gives us a custom Fourier basis
- Allows model-free forecasting and correcting model error

A BIT OF GEOMETRY

- Let $\iota : \mathcal{M} \to \mathbb{R}^m$ be the embedding into data space
- Tangent space $T_X \mathcal{M}$ inherits an inner product

 $g_x(v,w) = \langle D\iota(x)v, D\iota(x)w \rangle_{\mathbb{R}^m}$

- ► g is called the Riemannian metric
- ► If $e_1, ..., e_d \in T_x \mathcal{M}$ is a basis, define $g_{ij}(x) = g_x(e_i, e_j)$
- Define the volume form $dV(x) = \sqrt{\det(g(x))}$

►
$$\operatorname{vol}(\mathcal{M}) = \int_{x \in \mathcal{M}} 1 \, dV(x)$$

A BIT MORE GEOMETRY: THE EXPONENTIAL MAP

Graph Constructions

The exponential map takes tangent vectors to the manifold

$$\exp_x: T_x\mathcal{M} \to U \subset \mathcal{M}$$

Conclusion

Extras

APPLICATIONS

- ▶ Let $\gamma : [0, 1] \rightarrow M$ be geodesic curve with $\gamma'(t) = 1$
- If $\gamma'(0) = s/||s||$ then $\exp_x(s) = \gamma(1)$ and $\exp_x(0) = x$ so

$$y = x + s + \frac{1}{2}II(s,s) + \mathcal{O}(s_i^3)$$

► Fact 1: $||y - x||^2 = ||s||^2 + O(s_i^4)$

MANIFOLD LEARNING

INTRO

- Fact 2: Natural volume element, dV(y) = ds
- ▶ Fact 3: Gradient, $D_s(f \circ \exp_x) = \nabla f$

► Fact 4: Laplace-Beltrami operator, $\sum_{i=1}^{d} \frac{d^2(f \circ \exp_x)}{ds^2} = \Delta f$

DIFFUSION MAPS: ALLOWING ARBITRARY SAMPLING For $X_i \sim q$

$$\mathbb{E}[Kf(x)] = f(x)q(x) + mh^2(f(x)q(x)\omega(x) + \Delta(fq)(x)) + \mathcal{O}(h^4)$$

$$D(x) = K1(x) = q(x) + mh^2(q(x)\omega(x) + \Delta q(x)) + \mathcal{O}(h^4)$$

Right normalize:

$$\hat{K}f \equiv K\left(rac{f}{D}
ight) = f(x) + mh^2\left(\Delta f(x) - f(x)rac{\Delta q(x)}{q(x)}
ight)$$

• Left normalize: $\hat{D} \equiv \hat{K} = 1 - mh^2 \frac{\Delta q(x)}{q(x)}$

$$\frac{\hat{K}f}{\hat{D}} = f(x) + mh^2 \Delta f(x)$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CONTINUOUS K-NEAREST NEIGHBORS (CKNN)

► Let *x_k* denote the *k*th nearest neighbor of *x*

CkNN: Edge between the points *x*, *y* if $\frac{||x-y||}{\sqrt{||x-x_k|| ||y-y_k||}} < \delta$

- Corresponds to variable bandwidth kernel with $\beta = -1/d$
- Corollary: $L_{\rm un}\vec{f} \to \overrightarrow{\Delta_{\tilde{g}}f}$
- For fixed k, $||x x_k|| \propto q(x)^{-1/d}$ so $\beta = -1/d$
- ► This is a variable bandwidth kernel with $K(t) = \mathbf{1}_{\{t < 1\}}$ so

$$K\left(\frac{||x-y||}{\delta\sqrt{q(x)^{-1/d}q(y)^{-1/d}}}\right) = \mathbf{1}_{\left\{\frac{||x-y||}{\sqrt{||x-x_k|| ||y-y_k||}} < \delta\right\}}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ◆豆 > ◆□ >

CKNN CONVERGENCE RESULT

- Define the unnormalized graph Laplacian $L_{un} = D K$
- Corollary: $L_{un}\vec{f} \rightarrow \overrightarrow{\Delta_{\tilde{g}}}\vec{f}$
- Only $\beta = -1/d$ yields a Laplace-Beltrami operator
- ${ ilde g}\equiv q^{2/d}g$ is a conformal change of metric on ${\mathcal M}$
- Natural volume form:

$$d ilde{V}=\sqrt{| ilde{g}|}=\sqrt{|q^{2/d}g|}=q\sqrt{|g|}=q\,dV$$

►
$$\operatorname{vol}_{\tilde{g}}(\mathcal{M}) = \int_{\mathcal{M}} d\tilde{V} = \int_{\mathcal{M}} q \, dV = 1$$

Extras

Graph Constructions

Applications

Conclusion

Extras

500

ATTRACTOR CLUSTERING Multi-stability in Nematic Liquid Crystals:

Finding good metrics/coordinates:

THE DISCRETE EXTERIOR CALCULUS (DEC)

- ► Estimate Laplace-de Rham: $\Delta^k = \delta^{k+1} d^k + d^{k-1} \delta^k$
- Compute Betti numbers: $H^k(\mathcal{M}) \cong \text{Kernel}(\Delta^k)$
- Eigenforms in the kernel of Δ^1 on T^2 :

Intro	Manifold Learning	Graph Constructions	APPLICATIONS	Conclusion	Extras
000000	000000000000000000000000000000000000000	000	00000000000	0000	0000000

• Representatives of $H^1(\mathcal{M})$ on a genus two surface:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □