Learning manifolds from data

Tyrus Berry

Mathematics Colloquium
 GMU

Feb. 24, 2017

Motivating Example: Nematic Liquid Crystal

Finding Hidden Structure in Data

The sub-image geometry:

Parametric Modeling

- Model error:
- Trade off resolution and complexity
- Stationarity/Homogeneity of parameters
- Assimilate Data: Fit Parameters/Variables
- Lumps together noise and model error

Parametric Modeling

- Model error:
- Trade off resolution and complexity
- Stationarity/Homogeneity of parameters
- Assimilate Data: Fit Parameters/Variables
- Lumps together noise and model error

Data Assimilation

- Estimate state/parameters from noisy observations
- EnKF requires noise covariances (unknown)
- Adaptive data assimilation
- Estimates covariances, compensates for model error
- Extends (Mehra 1970,1972) to nonlinear systems

Hamilton, Berry, Peixoto, Sauer (PRE, 2013)
Berry \& Sauer (Tellus A, 2013)
Berry \& Harlim (Proc. Royal Society A, 2014)
Hamilton, Berry, \& Sauer (Physical Review X, 2016)
Harlim \& Berry (Monthly Weather Review, in review)

Nonparametric Modeling

Data

Result

-Forecast
-Properties -Control

- Tools: For functions $f \in \mathcal{H}$ determined by values $\vec{f}_{i}=f\left(x_{i}\right)$
- Interpolate: $f(x)=\sum_{j}\left\langle f, \varphi_{j}\right\rangle \varphi_{j}(x)$
- Quadrature: $\left\langle f, \varphi_{i}\right\rangle \approx \sum_{i} f\left(x_{i}\right) \varphi\left(x_{i}\right)$
- Operator Representation: $\mathbf{A}_{j k}=\left\langle\varphi_{j}, \mathcal{A} \varphi_{k}\right\rangle$
- All require a basis $\left\{\varphi_{j}\right\}$!

Roadmap

- What is manifold learning? \Rightarrow Estimate Laplacian, Δ
- How to find the Laplacian? \Rightarrow Graph Laplacian, L
- Convergence $\mathbf{L} \rightarrow \Delta$ and overcoming limitations
- Key result: Extension to non-compact manifolds
- New graph construction based on key result (TDA)
- Applications and future directions

What is Manifold Learning?

- Geometric prior: Data on Riemannian manifold $\mathcal{M} \subset \mathbb{R}^{m}$
- Goal: Represent all the information about a manifold
- A smooth embedded manifold $\mathcal{M} \subset \mathbb{R}^{m}$ inherits:
- A metric tensor $g_{x}: T_{x} \mathcal{M} \times T_{x} \mathcal{M} \rightarrow \mathbb{R}$ (inner product)
- g completely determines the geometry of \mathcal{M}
- A volume form $d V(x)=\sqrt{\operatorname{det}\left(g_{x}\right)} d x^{1} \wedge \cdots \wedge d x^{d}$
- Laplace-Beltrami operator, Δ, is equivalent to g
- $\Delta f=\operatorname{div} \circ \nabla=\frac{1}{\sqrt{|g|}} \partial_{i} g^{i j} \sqrt{|g|} \partial_{j} f$
- $g(\nabla f, \nabla h)=\frac{1}{2}(f \Delta h+h \Delta f-\Delta(f h))$

What is Manifold Learning?

- Manifold learning \Leftrightarrow Estimating Laplace-Beltrami
- Hodge theorem:

Eigenfunctions $\Delta \varphi_{i}=\lambda_{i} \varphi_{i}$ orthonormal basis for $L^{2}(\mathcal{M}, g)$

- Smoothest functions: φ_{i} minimizes the functional

$$
\lambda_{i}=\min _{\substack{f \perp \varphi_{k} \\ k=1, \ldots, i-1}}\left\{\frac{\int_{\mathcal{M}}\|\nabla f\|^{2} d V}{\int_{\mathcal{M}}|f|^{2} d V}\right\}
$$

- Eigenfunctions of Δ are custom Fourier basis
- Smoothest orthonormal basis for $L^{2}(\mathcal{M}, g)$
- Can be used to define wavelet frame
- Define the Sobolev spaces on \mathcal{M}

Harmonic Analysis on Manifolds

Harmonic Analysis on Manifolds

So HOW DO WE FIND THE LAPLACIAN FROM DATA?

- Assume data lies on (or at least near) a manifold
- Approximate manifold with graph \Rightarrow Connect nearby points

So HOW DO WE FIND THE LAPLACIAN FROM DATA?

- Problem: Noise and outliers can lead to bridging

So HOW DO WE FIND THE LAPLACIAN FROM DATA?

- To prevent bridging we weight the edges
- Edges are given weights $K_{\delta}(x, y)=e^{-\frac{\|x-y\|^{2}}{4 \delta^{2}}}$

So HOW DO WE FIND THE LAPLACIAN FROM DATA?

- Data set \Rightarrow weighted graph
- Edge Weights defined by a kernel function

$$
K_{\delta}\left(x_{i}, x_{j}\right)=e^{-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{4 \delta^{2}}}
$$

- Bandwidth δ determines localization
- 'Adjacency' matrix: $\mathbf{K}_{i j}=K\left(x_{i}, x_{j}\right)$
- 'Degree' matrix: $\mathbf{D}_{i i}=\sum_{j} \mathbf{K}_{i j}$
- Normalized graph Laplacian: $\mathbf{L}=\mathbf{I}-\mathbf{D}^{-1} \mathbf{K}$

Pointwise convergence

Theorem: (Belkin \& Niyogi, 2005, Singer, 2006)
For $\left\{x_{i}\right\}_{i=1}^{N} \subset \mathcal{M} \subset \mathbb{R}^{m}$ uniformly sampled on a compact manifold and for $\vec{f}_{i}=f\left(x_{i}\right)$ where $f \in C^{3}(\mathcal{M})$

$$
\frac{1}{\delta^{2}}(\mathbf{L} \vec{f})_{i}=\Delta f\left(x_{i}\right)+\mathcal{O}\left(\delta^{2}, \frac{1}{N^{1 / 2} \delta^{1+d / 2}}\right)
$$

$\delta=$ bandwidth
$N=$ number of points

Restrictions that have been overcome to deal WITH REAL DATA:

- Arbitrary sampling (Coifman \& Lafon, 'Diffusion maps', ACHA 2006)
- Non-compact manifolds (Berry \& Harim, ACHA 2015)
- Other kernel functions (Thesis 2013; Berry \& Sauer, ACHA 2015)
- Boundary (Coifman \& Lafon, ACHA 2006; Berry \& Sauer, J. Comp. Stat. 2016)
- Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry \& Sauer, submitted)

Restrictions that have been overcome to deal WITH REAL DATA:

- Arbitrary sampling (Coifman \& Lafon, 'Diffusion maps', ACHA 2006)
- Non-compact manifolds (Berry \& Harim, ACHA 2015)
- Other kernel functions (Thesis 2013; Berry \& Sauer, ACHA 2015)
- Boundary (Coifman \& Lafon, ACHA 2006; Berry \& Sauer, J. Comp. Stat. 2016)
- Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry \& Sauer, submitted)

Local Kernels

- A local kernel has exponential decay:

$$
K_{\delta}(x, x+\delta y)<c_{1} e^{-c_{2}\|y\|^{2}}
$$

- Theorem: Symmetric local kernels converge to Laplacians
- Every local kernel determines a geometry
- Every geometry accessible by a local kernel
- Explain success of 'kernel methods' in data science:
- KPCA: Kernel Principal Component Analysis
- KSVM: Kernel Support Vector Machines
- KDE: Kernel Density Estimation
- RKHS: Reproducing Kernel Hilbert Spaces
- Spectral Clustering (KPCA)

Restrictions that have been overcome to deal WITH REAL DATA:

- Arbitrary sampling (Coifman \& Lafon, 'Diffusion maps', ACHA 2006)
- Non-compact manifolds (Berry \& Harim, ACHA 2015)
- Other kernel functions (Thesis 2013; Berry \& Sauer, ACHA 2015)
- Boundary (Coifman \& Lafon, ACHA 2006; Berry \& Sauer, J. Comp. Stat. 2016)
- Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry \& Sauer, submitted)

TANGIBLE MANIFOLDS

- Compute ambient distance $\|x-y\|_{\mathbb{R}^{m}}$
- Need localization in $d_{\mathcal{I}}(x, y)=\inf _{\gamma}\left\{\int_{0}^{1}\left|\gamma^{\prime}(t)\right| d t\right\}$
- Assume ratio $R(x, y)=\frac{\|x-y\|_{\mathbb{R}} m}{d_{I}(x, y)}$ bounded away from zero
- We will use the exponential map to change variables
- Assume injectivity radius inj(x) bounded away from zero

Definition: A manifold is uniformly tangible if there are lower bounds on $\operatorname{inj}(x)$ and $\inf _{y \in \mathcal{M}} R(x, y)$ independent of x

Consistency Part 1

- Matrix times vector converges to integral operator:

$$
(\mathbf{K} \vec{f})_{i}=\sum_{j=1}^{N} K_{\delta}\left(x_{i}, x_{j}\right) f\left(x_{j}\right) \xrightarrow{N \rightarrow \infty} \int_{\mathcal{M}} K_{\delta}\left(x_{i}, y\right) f(y) d V(y)
$$

- Assume kernel has fast decay: $K_{\delta}(x, y)<e^{-\|x-y\|^{2} / \delta^{2}}$
- Localize integral, requires $R\left(x_{i}, y\right)=\frac{\left\|x_{i}-y\right\|}{d_{l}\left(x_{i}, y\right)}>0$

$$
(\mathbf{K} \vec{f})_{i} \rightarrow \int_{\mathcal{M} \operatorname{eexp}_{x_{i}}\left(B_{\delta}(0)\right)} K_{\delta}\left(x_{i}, y\right) f(y) d V(y)+\mathcal{O}\left(\delta^{k}\right)
$$

- Change variables to the tangent space $y=\exp _{x_{i}}(s)$:

$$
(\mathbf{K} \vec{f})_{i} \rightarrow \int_{B_{\delta}(0)} K_{\delta}\left(x_{i}, \exp _{x_{i}}(s)\right) f\left(\exp _{x_{i}}(s)\right) d s+\mathcal{O}\left(\delta^{k}\right)
$$

- Requires injectivity radius inj $\left(x_{i}\right)>\delta>0$

Consistency Part 2

- Taylor expansion in normal coordinates:

$$
f\left(\exp _{x}(s)\right)=f(x)+\nabla f(x) \cdot s+\frac{1}{2} s^{\top} H\left(f \circ \exp _{x}\right)(0) s
$$

- Symmetric kernel \Rightarrow Odd terms integrate to zero

$$
\begin{aligned}
(\mathbf{K} \vec{f})_{i} \rightarrow & \int_{\|\boldsymbol{s}\|<\delta}\left(K(\|\boldsymbol{s}\|)+\mathcal{O}\left(\delta^{2} s_{i}^{4}\right) K^{\prime}(\|\boldsymbol{s}\|) /\|\boldsymbol{s}\|\right) \\
& \left.\left(f\left(x_{i}\right)+\delta \nabla f\left(x_{i}\right) \cdot s+\frac{\delta^{2}}{2} s^{\top} H\left(f \circ \exp _{x_{i}}\right)(0) s\right)\right) d s+\mathcal{O}\left(\delta^{4}\right) \\
= & f\left(x_{i}\right)+m \delta^{2}\left(f\left(x_{i}\right) \omega(x)+\Delta f\left(x_{i}\right)\right)+\mathcal{O}\left(\delta^{4}\right)
\end{aligned}
$$

- Normalize: $\mathbf{D}^{-1} \mathbf{K} \vec{f}=\frac{\mathbf{K} \vec{f}}{\mathbf{K} \overrightarrow{1}} \rightarrow \vec{f}+m \delta^{2} \overrightarrow{\Delta f}+\mathcal{O}\left(\delta^{4}\right)$
- Consistency: $\frac{1}{m \delta^{2}}\left(\mathbf{D}^{-1} \mathbf{K}-\mathbf{I}\right) \vec{f} \rightarrow \overrightarrow{\Delta f}+\mathcal{O}\left(\delta^{2}\right)$

CONSISTENCY IS NOT ENOUGH!

- Extend to arbitrary sampling $x_{i} \sim q$ (Coifman \& Lafon)
- Variance: $\mathbb{E}\left[\left((L \vec{f})_{i}-\Delta f\left(x_{i}\right)\right)^{2}\right]=\mathcal{O}\left(\frac{q\left(x_{i}\right)^{3-4 d}}{N \delta^{2+d}}\right)$
- Negative exponent: $3-4 d<0$
- As density q approaches zero the variance blows up!
- Solution: Variable bandwidth

Variable Bandwidth Kernels

We introduced the variable bandwidth kernel:

$$
K_{\delta, \beta}(x, y)=K\left(\frac{\|x-y\|}{\delta \sqrt{q(x)^{\beta} q(y)^{\beta}}}\right)
$$

Theorem (Berry and Harlim, ACHA, 2015):

$$
\mathbf{L}_{\delta, \alpha, \beta} \vec{f}=\Delta f+c_{1} \nabla f \cdot \nabla \log q+\mathcal{O}\left(\delta^{2}, \frac{q^{-c_{2}}}{\sqrt{N} h^{1+d / 2}}\right)
$$

- Operator defined by: $c_{1}=2-2 \alpha+\alpha \beta+2 \beta$
- Variance determined by: $c_{2}=1 / 2-2 \alpha+2 d \alpha+d \beta / 2+\beta$

Example: Variable Bandwidth Kernel

Gaussian data: Brownian motion in quadratic potential

Eigenfunctions (Hermite)

Error vs. Bandwidth

Summary of Manifold Learning

- Manifold learning \Leftrightarrow Estimating Laplace-Beltrami
- Can estimate Laplace-Beltrami with a graph Laplacian
- For a non-compact manifold:
- Manifold must be tangible
- Requires a variable bandwidth kernel
- My other contributions:
- Access any desired geometry (local kernels)
- Manifolds with boundary
- Spectral convergence

CONTINUOUS K-NEAREST NEIGHBORS (CKNN)

Building unweighted graphs from data (TDA)
CkNN Graph: Edge $\{x, y\}$ added if $\frac{\|x-y\|}{\sqrt{\left\|x-x_{k}\right\|}\left\|y-y_{k}\right\|}<\delta$

- $x_{k}=k$-th nearest neighbor of x
- Unnormalized graph Laplacian: $\mathbf{L}_{\mathrm{un}}=\mathbf{D}-\mathbf{K}$
- Corollary: $\mathrm{L}_{\mathrm{un}} \vec{f} \rightarrow \overrightarrow{\Delta_{\tilde{g}} f}$ where ($\tilde{g}=q^{2 / d} g, d \tilde{V}=q d V$)
- New result: Spectral convergence $\mathbf{L}_{\mathrm{un}} \rightarrow \Delta_{\tilde{g}}$
- Consistency of CkNN clustering:
- Conn. comp. of graph \Leftrightarrow Kernel of L_{un}
- Conn. comp. of $\mathcal{M} \Leftrightarrow$ Kernel of $\Delta_{\tilde{g}}$ (Hodge theorem)

CKNN YIELDS IMPROVED GRAPH CONSTRUCTION

2D Gaussian with annulus removed:
Persistent vs. consistent homology

Large bandwidth

CkNN

Improved clustering using CkNN

Nonparametric Modeling

- Tools: Geometry and Harmonic/Functional Analysis
- Interpolate: $f(x)=\sum_{j}\left\langle f, \varphi_{j}\right\rangle \varphi_{j}(x)$
- Quadrature: $\left\langle f, \varphi_{i}\right\rangle \approx \sum_{i} f\left(x_{i}\right) \varphi\left(x_{i}\right)$
- Operator Representation: $\mathbf{A}_{j k}=\left\langle\varphi_{j}, \mathcal{A} \varphi_{k}\right\rangle$
- All require a basis $\left\{\varphi_{j}\right\}$!

Diffusion Forecast

- Autonomous SDE: $d x=a(x) d t+b(x) d W_{t}$
- Density solves Fokker-Planck PDE: $\frac{\partial}{\partial t} p=\mathcal{L}^{*} p$
- Shift map: $S(f)\left(x_{i}\right)=f\left(x_{i+1}\right)$ estimates $\mathbb{E}[S(f)]=e^{\tau \mathcal{L}} f$
- $\vec{c}(t)$ are the custom Fourier coefficients of p

$$
\begin{aligned}
& p(x, t) \quad-\text { Diftusion Forecast }_{\longrightarrow}^{\longrightarrow} p(x, t+\tau)=e^{\tau \mathcal{L}^{*}} p(x, t) \\
& \downarrow\left\langle p, \varphi_{j}\right\rangle \quad \uparrow \Sigma_{j} c_{i} \varphi_{j} q \\
& \vec{c}(t) \xrightarrow{A_{j} \equiv E\left[\left\langle\varphi_{j}, S_{\varphi}\right\rangle / q\right]} \quad \vec{c}(t+\tau)=A \vec{c}(t) .
\end{aligned}
$$

Berry and Harlim (SIAM J. Uncertainty Quantification, 2014)
Berry, Harlim, and Giannakis (Physical Review E, 2015)

MANIFOLD LEARNING \Rightarrow CUSTOM ‘FOURIER’ BASIS

- Optimal basis: Minimum variance $A_{l j} \equiv \mathbb{E}\left[\left\langle\varphi_{j}, S \varphi_{l}\right\rangle_{q}\right]$

Diffusion Forecast Example

No Model
Perfect Model

Berry, Harlim, and Giannakis (PRE, 2015)

Forecasting the El Niño Index

Sea surface temperatures (SST) in the Niño indices:

Index: 3-month running average SST anomaly

Forecasting the El Niño Index

Chekrouna, Kondrashov, and Ghil, PNAS 2011,108,no. 29

Diffusion Forecast

Berry, Harlim, and Giannakis (PRE, 2015)

Your 13-month Forecast

-Probability of El Nino \cdots. Actual El Nino—Probability of La Nina \cdots. Actual La Nina
El Niño $=$ Index $>0.5 \quad$ La Niña $=$ Index <-0.5

Semiparametric Modeling

- Data becomes part of the model:
- Start with imperfect parametric model
- Assimilate data (adaptive), collect residual errors
- Build nonparametric model for the residuals

Semiparametric Forecast Model

- Partially known model $\dot{x}=f(x, \theta)$
- No equations for θ !
- Apply the Diffusion Forecast to $p(\theta, t)$
- Sample $\theta^{k}(t) \sim p(\theta, t)$ and pair with ensemble $x^{k}(t)$

$$
\begin{array}{cc}
\left(x^{k}(t), \theta^{k}(t)\right) \xrightarrow{\dot{x}=f(x, \theta)} & \left(x^{k}(t+\tau), \theta^{k}(t+\tau)\right) \\
\uparrow \theta^{k}(t) & \\
p(\theta, t) & \uparrow \theta^{k}(t+\tau) \\
& -- \text { Diffusion Forecast } \\
p-\text {---- } \rightarrow & p(\theta, t+\tau)
\end{array}
$$

EXAMPLE: 40-DIMENSIONAL LORENZ-96 SYSTEM DRIVEN BY LORENZ-63

$$
\dot{x}_{i}=\theta x_{i-1} x_{i+1}-x_{i-1} x_{i-2}-x_{i}+8
$$

Berry and Harlim (J. Computational Physics, 2016)

EXAMPLE: 40-DIMENSIONAL LORENZ-96 SYSTEM DRIVEN BY LORENZ-63

$$
\dot{x}_{i}=\theta x_{i-1} x_{i+1}-x_{i-1} x_{i-2}-x_{i}+8
$$

Future Direction \#1: Feature maps

- Want to represent map $\mathcal{H}: \mathcal{M} \rightarrow \mathcal{N}$
- For \mathcal{H} a diffeomorphism: pull-back metric
- Otherwise: Apply the Iterated Diffusion Map (IDM)

$$
\frac{d g}{d t}=\frac{1}{2}\left(\left(D \mathcal{H}^{\top} D \mathcal{H}-l\right) g+g\left(D \mathcal{H}^{\top} D \mathcal{H}-l\right)\right)
$$

- Example: $\mathcal{H}(x, y)=\sqrt{x^{2}+y^{2}}$

Berry \& Sauer, (ACHA, 2015)
Berry \& Harlim (ACHA, 2016)

Future Direction \#2: Consistency of Topological Data Analysis (TDA)

- Topological Consistency: VR homology $\rightarrow H_{k}(\mathcal{M})$
- Spectral convergence proves consistency of $H_{0}(\mathcal{M})$
- Discrete Exterior Calculus (DEC):
- TDA uses simplicial complexes to compute homology
- Weighted simplices correspond to differential forms
- Kernel on simplices can define Laplacians on forms
- Which kernels recover the Laplace de-Rham operator?
- Smooth Exterior Calculus (SEC):
- Start with the smooth eigenfunctions $\Delta \varphi_{i}=\lambda_{i} \varphi_{i}$
- Define a frame for 1-forms: $b^{i j}=\varphi_{i} d \varphi_{j}-\varphi_{j} d \varphi_{i}$
- Define Laplace-de Rham operators on $b^{i j}$
$-\left\langle b^{k l}, \Delta^{1}\left(b^{i j}\right)\right\rangle=\sum_{r}\left(c_{k i r} c_{l j r}-c_{k j r} c_{l i r}\right)\left(\lambda_{r}^{2}-\lambda_{r}\left(\lambda_{k}+\lambda_{i}+\lambda_{l}+\lambda_{j}\right)\right)+c_{i j r} c_{k l r}\left(\lambda_{j}-\lambda_{j}\right)\left(\lambda_{l}-\lambda_{k}\right)$

Future Direction \#3: Smoothness Priors

- Manifold learning suffers from the curse-of-dimensionality
- Bias-squared: $\mathcal{O}\left(\delta^{4}\right)$
- Variance: $\mathcal{O}\left(N^{-1} \delta^{-2-d}\right)$
- Optimal bandwidth: $\delta=\mathcal{O}\left(N^{-1 /(6+d)}\right)$
- Minimal Error: $\mathcal{O}\left(N^{-2 /(6+d)}\right)$
- Richardson Extrapolation: Combine multiple δ 's
- Reduces bias to $\mathcal{O}\left(\delta^{2 k}\right)$
- Increases variance by a constant
- Requires \mathcal{M} to be C^{k}
- 'Solves' curse-of-dimensionality by assuming smoothness
- 5000 points
- 10-dim torus
- In \mathbb{R}^{20}

SUMMARY

- Manifold learning \Leftrightarrow Estimating Laplace-Beltrami
- Can estimate Laplace-Beltrami with a graph Laplacian
- Need an appropriate kernel (variable bandwidth)
- Results imply better method for graph construction (CkNN)
- Spectral convergence gives us a custom Fourier basis
- Allows model-free forecasting and correcting model error

A BIT OF GEOMETRY

- Let $\iota: \mathcal{M} \rightarrow \mathbb{R}^{m}$ be the embedding into data space
- Tangent space $T_{x} \mathcal{M}$ inherits an inner product

$$
g_{x}(v, w)=\left\langle D_{\iota}(x) v, D_{\iota}(x) w\right\rangle_{\mathbb{R}^{m}}
$$

- g is called the Riemannian metric
- If $e_{1}, \ldots, e_{d} \in T_{x} \mathcal{M}$ is a basis, define $g_{i j}(x)=g_{x}\left(e_{i}, e_{j}\right)$
- Define the volume form $d V(x)=\sqrt{\operatorname{det}(g(x))}$
- $\operatorname{vol}(\mathcal{M})=\int_{x \in \mathcal{M}} 1 d V(x)$

A BIt MORE GEOMETRY: THE EXPONENTIAL MAP

- The exponential map takes tangent vectors to the manifold

$$
\exp _{x}: T_{x} \mathcal{M} \rightarrow U \subset \mathcal{M}
$$

- Let $\gamma:[0,1] \rightarrow \mathcal{M}$ be geodesic curve with $\gamma^{\prime}(t)=1$
- If $\gamma^{\prime}(0)=\boldsymbol{s} / \| \boldsymbol{s}| |$ then $\exp _{x}(\boldsymbol{s})=\gamma(1)$ and $\exp _{x}(0)=x$ so

$$
y=x+s+\frac{1}{2} \|(s, s)+\mathcal{O}\left(s_{i}^{3}\right)
$$

- Fact 1: $\|y-x\|^{2}=\|s\|^{2}+\mathcal{O}\left(s_{i}^{4}\right)$
- Fact 2: Natural volume element, $d V(y)=d s$
- Fact 3: Gradient, $D_{s}\left(f \circ \exp _{x}\right)=\nabla f$
- Fact 4: Laplace-Beltrami operator, $\sum_{i=1}^{d} \frac{d^{2}\left(f \text { foxp } p_{x}\right)}{d s_{i}^{2}}=\Delta f$

DIffusion maps: Allowing arbitrary sampling

- For $X_{i} \sim q$

$$
\begin{aligned}
\mathbb{E}[K f(x)] & =f(x) q(x)+m h^{2}(f(x) q(x) \omega(x)+\Delta(f q)(x))+\mathcal{O}\left(h^{4}\right) \\
D(x) & =K 1(x)=q(x)+m h^{2}(q(x) \omega(x)+\Delta q(x))+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

- Right normalize:

$$
\hat{K} f \equiv K\left(\frac{f}{D}\right)=f(x)+m h^{2}\left(\Delta f(x)-f(x) \frac{\Delta q(x)}{q(x)}\right)
$$

- Left normalize: $\hat{D} \equiv \hat{K} 1=1-m h^{2} \frac{\Delta q(x)}{q(x)}$

$$
\frac{\hat{K} f}{\hat{D}}=f(x)+m h^{2} \Delta f(x)
$$

CONTINUOUS K-NEAREST NEIGHBORS (CkNN)

- Let x_{k} denote the k th nearest neighbor of x

CkNN: Edge between the points x, y if $\frac{\|x-y\|}{\sqrt{\left\|x-x_{k}\right\|\left\|y-y_{k}\right\|}}<\delta$

- Corresponds to variable bandwidth kernel with $\beta=-1 / d$
- Corollary: $L_{\mathrm{un}} \vec{f} \rightarrow \overrightarrow{\Delta_{\tilde{g}} f}$
- For fixed $k,\left\|x-x_{k}\right\| \propto q(x)^{-1 / d}$ so $\beta=-1 / d$
- This is a variable bandwidth kernel with $K(t)=1_{\{t<1\}}$ so

$$
K\left(\frac{\|x-y\|}{\delta \sqrt{q(x)^{-1 / d} q(y)^{-1 / d}}}\right)=1_{\left\{\frac{\|x-y\|}{\sqrt{\left\|x-x_{k}\right\|\left\|y-y_{k}\right\|}}<\delta\right\}}
$$

CkNN Convergence result

- Define the unnormalized graph Laplacian $L_{\mathrm{un}}=D-K$
- Corollary: $L_{\mathrm{un}} \vec{f} \rightarrow \overrightarrow{\Delta_{\tilde{g}} f}$
- Only $\beta=-1$ /d yields a Laplace-Beltrami operator
- $\tilde{g} \equiv q^{2 / d} g$ is a conformal change of metric on \mathcal{M}
- Natural volume form:

$$
d \tilde{V}=\sqrt{|\tilde{g}|}=\sqrt{\left|q^{2 / d} g\right|}=q \sqrt{|g|}=q d V
$$

- $\operatorname{vol}_{\tilde{g}}(\mathcal{M})=\int_{\mathcal{M}} d \tilde{V}=\int_{\mathcal{M}} q d V=1$

Attractor Clustering

Multi-stability in Nematic Liquid Crystals:

Finding good metrics/coordinates:

The Discrete Exterior Calculus (DEC)

- Estimate Laplace-de Rham: $\Delta^{k}=\delta^{k+1} d^{k}+d^{k-1} \delta^{k}$
- Compute Betti numbers: $H^{k}(\mathcal{M}) \cong \operatorname{Kernel}\left(\Delta^{k}\right)$
- Eigenforms in the kernel of Δ^{1} on T^{2} :

- Representatives of $H^{1}(\mathcal{M})$ on a genus two surface:

