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MOTIVATING EXAMPLE: NEMATIC LIQUID CRYSTAL

Video provided by Rob Cressman, Krasnow Institute, GMU
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FINDING HIDDEN STRUCTURE IN DATA
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PARAMETRIC MODELING'
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•Forecast
•Properties
•Control

I Model error:

I Trade off resolution and complexity

I Stationarity/Homogeneity of parameters

I Assimilate Data: Fit Parameters/Variables

I Lumps together noise and model error
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DATA ASSIMILATION

I Estimate state/parameters from noisy observations

I EnKF requires noise covariances (unknown)

I Adaptive data assimilation

I Estimates covariances, compensates for model error

I Extends (Mehra 1970,1972) to nonlinear systems

Hamilton, Berry, Peixoto, Sauer (PRE, 2013)

Berry & Sauer (Tellus A, 2013)

Berry & Harlim (Proc. Royal Society A, 2014)

Hamilton, Berry, & Sauer (Physical Review X, 2016 )

Harlim & Berry (Monthly Weather Review, in review)

REAL-TIME TRACKING OF NEURONAL NETWORK . . . PHYSICAL REVIEW E 88, 052715 (2013)

FIG. 5. Estimated network connection matrices for 160 sec of data from two MEA networks. The percentage time of statistical significance
for (a) smaller network with five active electrodes and (b) larger network with 12 active electrodes is shown. A βij connection was determined to
be significant by our method when its 95% confidence region did not include 0. In (a), 7 of 20 possible connections were found to be significant
throughout the entire data set. In (b), 28 of 132 possible connections were found to be significant for at least 50% of the time interval.

that the connection exists, at least within the confidence level
used.

Figure 5(a) shows the estimated network connection matrix
and corresponding time of statistical significance for 160 sec of
data from the small MEA network with five active electrodes
at the 95% confidence level. Of the 20 possible connections
in this network, only seven were determined to be statistically
significant. These were found significant throughout the entire
data series showing that our method was highly confident in
their existence.

Figure 5(b) shows the estimated connection matrix com-
puted from a 160-sec interval of data from the larger network
with 12 active electrodes at the 95% confidence level. Out of
the possible 132 connections, 28 were found to be significant
at some time during the interval. This larger network presented
questionable cases, typically whereby a connection parameter
was initially not significant but became an identified link as
more data were assimilated. All of the 28 connections that were
statistically significant for part of the interval were significant
for at least 50% of the interval, and 14 of the 28 were significant
during more than 90% of the interval, as shown in the figure.

V. CONCLUSION

A method that can carry out sequential tracking of neu-
ronal network links has a major advantage for experimental
purposes. Using an EnKF with a general neuron model is
a way to provide a statistically driven estimate of network
connectivity that is updated continuously as data arrive, unlike
offline methods such as [14–16]. This allows application to
network structures with moderate nonstationarity, a typical
feature of neural ensembles and biological networks in general.
As shown above, this algorithm for detecting connectivity
meets our criteria of being statistically based, robust to error,
and capable of real-time implementation.

We showed in simulation and with measured data from
neural cultures that such a method can work successfully. The
choice of the model in the EnKF plays a critical role. Figures 2
and 3 illustrate the dependence on model mismatch. Certainly,

if the model is not representative of the basic dynamics of the
underlying system, results will be compromised. A feature of
this approach is that allowing parameters of the mathematical
model in the EnKF to float may temper the mismatch between
the dynamics of the model and the experimental system,
resulting in more accuracy in the fitted connection parameters.
A deeper study of the dependence on models is a fruitful
direction for future work.

A related question is whether nonstationarity of the un-
derlying system can confound attempts to find the correct
connections. Undoubtedly this is true in some circumstances;
in particular, the connections may be changing during the
experiment. We attempt to minimize false conclusions by
allowing parameters in the model to drift along with the
data, to possibly correct for some of the nonstationarity in
the experimental system, independent of the connections, but
careful analysis of this possibility is beyond the scope of this
work.

While the MEAs are plated at a high density of neuronal
cells, observation of the network is restricted to the array’s
64 electrodes. While this may seem an undersampling of the
network, tracking the connections between observed neural
ensembles at each electrode may allow us to implement
significant network control. This technique opens up several
possible experimental strategies, including pharmacological
and electrophysiological studies where the effects of an applied
drug or pulse pattern on connectivity are to be determined.
The ability to continuously track connectivity is designed
to provide real-time feedback in an experimental situation,
allowing an researcher to adjust observation, control, or other
interventions.

Although we expect the statistical method outlined here
to greatly expedite several proximate research goals such as
tracking and control of neural cultures, the further objective
of generalizing the application of this statistical method from
cultures to the in vivo brain presents clear challenges. While
the cultures present dynamics that are on the whole relatively
nonsynchronous, activity arising from giant depolarizing
potentials [30] and sharp wave ripple events [31] show

052715-5
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I Tools: For functions f ∈ H determined by values ~fi = f (xi)

I Interpolate: f (x) =
∑

j

〈
f , ϕj

〉
ϕj (x)

I Quadrature: 〈f , ϕi〉 ≈
∑

i f (xi )ϕ(xi )

I Operator Representation: Ajk =
〈
ϕj ,Aϕk

〉
I All require a basis {ϕj}!
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ROADMAP

I What is manifold learning? ⇒ Estimate Laplacian, ∆

I How to find the Laplacian? ⇒ Graph Laplacian, L

I Convergence L→ ∆ and overcoming limitations

I Key result: Extension to non-compact manifolds

I New graph construction based on key result (TDA)

I Applications and future directions
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WHAT IS MANIFOLD LEARNING?

I Geometric prior: Data on Riemannian manifoldM⊂ Rm

I Goal: Represent all the information about a manifold

I A smooth embedded manifoldM⊂ Rm inherits:

I A metric tensor gx : TxM× TxM→ R (inner product)

I g completely determines the geometry ofM
I A volume form dV (x) =

√
det(gx ) dx1 ∧ · · · ∧ dxd

I Laplace-Beltrami operator, ∆, is equivalent to g

I ∆f = div ◦ ∇ = 1√
|g|
∂ig ij

√
|g|∂j f

I g(∇f ,∇h) = 1
2 (f ∆h + h∆f −∆(fh))
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WHAT IS MANIFOLD LEARNING?

I Manifold learning⇔ Estimating Laplace-Beltrami

I Hodge theorem:
Eigenfunctions ∆ϕi = λiϕi orthonormal basis for L2(M,g)

I Smoothest functions: ϕi minimizes the functional

λi = min
f⊥ϕk

k=1,...,i−1

{∫
M ||∇f ||2 dV∫
M |f |2 dV

}

I Eigenfunctions of ∆ are custom Fourier basis
I Smoothest orthonormal basis for L2(M,g)
I Can be used to define wavelet frame
I Define the Sobolev spaces onM
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HARMONIC ANALYSIS ON MANIFOLDS
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HARMONIC ANALYSIS ON MANIFOLDS
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SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

I Assume data lies on (or at least near) a manifold

I Approximate manifold with graph⇒ Connect nearby points
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SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

I Problem: Noise and outliers can lead to bridging
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SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

I To prevent bridging we weight the edges

I Edges are given weights Kδ(x , y) = e−
||x−y||2

4δ2
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SO HOW DO WE FIND THE LAPLACIAN FROM DATA?

I Data set⇒ weighted graph

I Edge Weights defined by a kernel function

Kδ(xi , xj) = e−
||xi−xj ||

2

4δ2

I Bandwidth δ determines localization

I ‘Adjacency’ matrix: Kij = K (xi , xj)

I ‘Degree’ matrix: Dii =
∑

j Kij

I Normalized graph Laplacian: L = I− D−1K
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POINTWISE CONVERGENCE

Theorem: (Belkin & Niyogi, 2005, Singer, 2006)
For {xi}Ni=1 ⊂M ⊂ Rm uniformly sampled on a compact
manifold and for ~fi = f (xi) where f ∈ C3(M)

1
δ2

(
L~f
)

i
= ∆f (xi) +O

(
δ2,

1
N1/2δ1+d/2

)

δ = bandwidth
N = number of points
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RESTRICTIONS THAT HAVE BEEN OVERCOME TO DEAL

WITH REAL DATA:

I Arbitrary sampling (Coifman & Lafon, ‘Diffusion maps’, ACHA 2006)

I Non-compact manifolds (Berry & Harlim, ACHA 2015)

I Other kernel functions (Thesis 2013; Berry & Sauer, ACHA 2015)

I Boundary (Coifman & Lafon, ACHA 2006; Berry & Sauer, J. Comp. Stat. 2016)

I Spectral convergence (Luxburg et al., Ann. Stat. 2008, Berry & Sauer, submitted)
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LOCAL KERNELS

I A local kernel has exponential decay:

Kδ(x , x + δy) < c1e−c2||y ||2

I Theorem: Symmetric local kernels converge to Laplacians

I Every local kernel determines a geometry
I Every geometry accessible by a local kernel

I Explain success of ‘kernel methods’ in data science:

I KPCA: Kernel Principal Component Analysis
I KSVM: Kernel Support Vector Machines
I KDE: Kernel Density Estimation
I RKHS: Reproducing Kernel Hilbert Spaces
I Spectral Clustering (KPCA)
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TANGIBLE MANIFOLDS

I Compute ambient distance ||x − y ||Rm

I Need localization in dI(x , y) = infγ
{∫ 1

0 |γ
′(t)|dt

}
I Assume ratio R(x , y) =

||x−y ||Rm
dI(x ,y) bounded away from zero

I We will use the exponential map to change variables

I Assume injectivity radius inj(x) bounded away from zero

Definition: A manifold is uniformly tangible if there are lower
bounds on inj(x) and infy∈MR(x , y) independent of x
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CONSISTENCY PART 1
I Matrix times vector converges to integral operator:(

K~f
)

i
=

N∑
j=1

Kδ(xi , xj)f (xj)
N→∞−−−−→

∫
M

Kδ(xi , y)f (y) dV (y)

I Assume kernel has fast decay: Kδ(x , y) < e−||x−y ||2/δ2

I Localize integral, requires R(xi , y) = ||xi−y ||
dI(xi ,y) > 0(

K~f
)

i
→
∫
M∩expxi

(Bδ(0))
Kδ(xi , y)f (y) dV (y) +O(δk )

I Change variables to the tangent space y = expxi
(s):(

K~f
)

i
→
∫

Bδ(0)
Kδ(xi ,expxi

(s))f (expxi
(s)) ds +O(δk )

I Requires injectivity radius inj(xi) > δ > 0
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CONSISTENCY PART 2
I Taylor expansion in normal coordinates:

f (expx (s)) = f (x) +∇f (x) · s +
1
2

s>H(f ◦ expx )(0)s

I Symmetric kernel⇒ Odd terms integrate to zero(
K~f
)

i
→
∫
||s||<δ

(
K (||s||) +O(δ2s4

i )K ′(||s||)/||s||
)
·(

f (xi) + δ∇f (xi) · s +
δ2

2
s>H(f ◦ expxi

)(0)s)

)
ds +O(δ4)

= f (xi) + mδ2(f (xi)ω(x) + ∆f (xi)) +O(δ4)

I Normalize: D−1K~f = K~f
K~1
→ ~f + mδ2−→∆f +O(δ4)

I Consistency: 1
mδ2 (D−1K− I)~f →

−→
∆f +O(δ2)
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CONSISTENCY IS NOT ENOUGH!

I Extend to arbitrary sampling xi ∼ q (Coifman & Lafon)

I Variance: E[((L~f )i −∆f (xi))2] = O
(

q(xi )
3−4d

Nδ2+d

)
I Negative exponent: 3− 4d < 0

I As density q approaches zero the variance blows up!

I Solution: Variable bandwidth

Berry and Harlim (ACHA, 2015)
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VARIABLE BANDWIDTH KERNELS

We introduced the variable bandwidth kernel:

Kδ,β(x , y) = K

(
||x − y ||

δ
√

q(x)βq(y)β

)

Theorem (Berry and Harlim, ACHA, 2015):

Lδ,α,β~f = ∆f + c1∇f · ∇ log q +O
(
δ2,

q−c2

√
Nh1+d/2

)

I Operator defined by: c1 = 2− 2α + dβ + 2β

I Variance determined by: c2 = 1/2− 2α + 2dα + dβ/2 + β
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EXAMPLE: VARIABLE BANDWIDTH KERNEL

Gaussian data: Brownian motion in quadratic potential

Eigenfunctions (Hermite) Error vs. Bandwidth
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Berry and Harlim (ACHA, 2015)
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SUMMARY OF MANIFOLD LEARNING

I Manifold learning⇔ Estimating Laplace-Beltrami

I Can estimate Laplace-Beltrami with a graph Laplacian

I For a non-compact manifold:

I Manifold must be tangible

I Requires a variable bandwidth kernel

I My other contributions:

I Access any desired geometry (local kernels)

I Manifolds with boundary

I Spectral convergence



INTRO MANIFOLD LEARNING Graph Constructions APPLICATIONS Conclusion Extras

CONTINUOUS K-NEAREST NEIGHBORS (CKNN)
Building unweighted graphs from data (TDA)

CkNN Graph: Edge {x , y} added if ||x−y ||√
||x−xk || ||y−yk ||

< δ

I xk = k -th nearest neighbor of x

I Unnormalized graph Laplacian: Lun = D− K

I Corollary: Lun
~f →

−−→
∆g̃ f where (g̃ = q2/dg,dṼ = q dV )

I New result: Spectral convergence Lun → ∆g̃

I Consistency of CkNN clustering:

I Conn. comp. of graph⇔ Kernel of Lun

I Conn. comp. of M ⇔ Kernel of ∆g̃ (Hodge theorem)

(Berry & Harlim (ACHA, 2015); Berry & Sauer (in review)
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CKNN YIELDS IMPROVED GRAPH CONSTRUCTION

2D Gaussian with annulus removed:

Persistent vs. consistent homology

Small bandwidth Large bandwidth CkNN
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IMPROVED CLUSTERING USING CKNN
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I Tools: Geometry and Harmonic/Functional Analysis

I Interpolate: f (x) =
∑

j

〈
f , ϕj

〉
ϕj (x)

I Quadrature: 〈f , ϕi〉 ≈
∑

i f (xi )ϕ(xi )

I Operator Representation: Ajk =
〈
ϕj ,Aϕk

〉
I All require a basis {ϕj}!
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DIFFUSION FORECAST

I Autonomous SDE: dx = a(x) dt + b(x) dWt

I Density solves Fokker-Planck PDE: ∂
∂t p = L∗p

I Shift map: S(f )(xi) = f (xi+1) estimates E[S(f )] = eτLf

I ~c(t) are the custom Fourier coefficients of p

p(x , t) Diffusion Forecast−−−−−−−−−−−→ p(x , t + τ) = eτL
∗
p(x , t)y〈p,ϕj〉

x∑j cjϕj q

~c(t)
Alj≡E[〈ϕj ,Sϕl 〉q ]

−−−−−−−−−−−−−−−−−→ ~c(t + τ) = A~c(t).

Berry and Harlim (SIAM J. Uncertainty Quantification, 2014)

Berry, Harlim, and Giannakis (Physical Review E, 2015)
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MANIFOLD LEARNING ⇒ CUSTOM ‘FOURIER’ BASIS

I Optimal basis: Minimum variance Alj ≡ E[〈ϕj ,Sϕl〉q]
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DIFFUSION FORECAST EXAMPLE

No Model Perfect Model

Berry, Harlim, and Giannakis (PRE, 2015)
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FORECASTING THE EL NIÑO INDEX

Sea surface temperatures (SST) in the Niño indices:

Index: 3-month running average SST anomaly
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FORECASTING THE EL NIÑO INDEX
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YOUR 13-MONTH FORECAST
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SEMIPARAMETRIC MODELING'

&

$

%

Data ⇒
⇐

'

&

$

%

Model
•Equations
•Variables
•Parameters�
�
�
�•Data:

⇒
⇐

'

&

$

%

Result
•Forecast
•Properties
•Control

I Data becomes part of the model:

I Start with imperfect parametric model
I Assimilate data (adaptive), collect residual errors
I Build nonparametric model for the residuals
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SEMIPARAMETRIC FORECAST MODEL

I Partially known model ẋ = f (x , θ)

I No equations for θ!

I Apply the Diffusion Forecast to p(θ, t)

I Sample θk (t) ∼ p(θ, t) and pair with ensemble xk (t)

(xk (t), θk (t))
ẋ=f (x ,θ)−−−−−−−−−−−−−−−→ (xk (t + τ), θk (t + τ))x θk (t)

x θk (t+τ)

p(θ, t) Diffusion Forecast−−−−−−−−−−−→ p(θ, t + τ)

Berry and Harlim (J. Computational Physics, 2016)
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EXAMPLE: 40-DIMENSIONAL LORENZ-96 SYSTEM

DRIVEN BY LORENZ-63

ẋi = θxi−1xi+1 − xi−1xi−2 − xi + 8
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Berry and Harlim (J. Computational Physics, 2016)
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EXAMPLE: 40-DIMENSIONAL LORENZ-96 SYSTEM

DRIVEN BY LORENZ-63

ẋi = θxi−1xi+1 − xi−1xi−2 − xi + 8
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FUTURE DIRECTION #1: FEATURE MAPS

I Want to represent map H :M→N
I For H a diffeomorphism: pull-back metric

I Otherwise: Apply the Iterated Diffusion Map (IDM)

dg
dt

=
1
2

(
(DH>DH− I)g + g(DH>DH− I)

)
I Example: H(x , y) =

√
x2 + y2

Berry & Sauer, (ACHA, 2015)

Berry & Harlim (ACHA, 2016)
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FUTURE DIRECTION #2: CONSISTENCY OF

TOPOLOGICAL DATA ANALYSIS (TDA)
I Topological Consistency: VR homology→ Hk (M)

I Spectral convergence proves consistency of H0(M)

I Discrete Exterior Calculus (DEC):

I TDA uses simplicial complexes to compute homology
I Weighted simplices correspond to differential forms
I Kernel on simplices can define Laplacians on forms
I Which kernels recover the Laplace de-Rham operator?

I Smooth Exterior Calculus (SEC):

I Start with the smooth eigenfunctions ∆ϕi = λiϕi

I Define a frame for 1-forms: bij = ϕidϕj − ϕjdϕi

I Define Laplace-de Rham operators on bij

I
〈

bkl ,∆1(bij )
〉

=
∑

r (ckir cljr − ckjr clir )(λ2
r −λr (λk +λi +λl +λj )) + cijr cklr (λj −λi )(λl −λk )
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FUTURE DIRECTION #3: SMOOTHNESS PRIORS
I Manifold learning suffers from the curse-of-dimensionality

I Bias-squared: O(δ4)

I Variance: O(N−1δ−2−d )

I Optimal bandwidth: δ = O(N−1/(6+d))

I Minimal Error: O(N−2/(6+d))

I Richardson Extrapolation: Combine multiple δ’s
I Reduces bias to O(δ2k )

I Increases variance by a constant
I RequiresM to be Ck

I ‘Solves’ curse-of-dimensionality by assuming smoothness

I 5000 points
I 10-dim torus
I In R20
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SUMMARY

I Manifold learning⇔ Estimating Laplace-Beltrami

I Can estimate Laplace-Beltrami with a graph Laplacian

I Need an appropriate kernel (variable bandwidth)

I Results imply better method for graph construction (CkNN)

I Spectral convergence gives us a custom Fourier basis

I Allows model-free forecasting and correcting model error
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A BIT OF GEOMETRY

I Let ι :M→ Rm be the embedding into data space

I Tangent space TxM inherits an inner product

gx (v ,w) = 〈Dι(x)v ,Dι(x)w〉Rm

I g is called the Riemannian metric

I If e1, ...,ed ∈ TxM is a basis, define gij(x) = gx (ei ,ej)

I Define the volume form dV (x) =
√

det(g(x))

I vol(M) =
∫

x∈M 1 dV (x)
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A BIT MORE GEOMETRY: THE EXPONENTIAL MAP

I The exponential map takes tangent vectors to the manifold

expx : TxM→ U ⊂M

I Let γ : [0,1]→M be geodesic curve with γ′(t) = 1

I If γ′(0) = s/||s|| then expx (s) = γ(1) and expx (0) = x so

y = x + s +
1
2

II(s, s) +O(s3
i )

I Fact 1: ||y − x ||2 = ||s||2 +O(s4
i )

I Fact 2: Natural volume element, dV (y) = ds

I Fact 3: Gradient, Ds(f ◦ expx ) = ∇f

I Fact 4: Laplace-Beltrami operator,
∑d

i=1
d2(f◦expx )

ds2
i

= ∆f
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DIFFUSION MAPS: ALLOWING ARBITRARY SAMPLING
I For Xi ∼ q

E[Kf (x)] = f (x)q(x) + mh2(f (x)q(x)ω(x) + ∆(fq)(x)) +O(h4)

D(x) = K 1(x) = q(x) + mh2(q(x)ω(x) + ∆q(x)) +O(h4)

I Right normalize:

K̂ f ≡ K
(

f
D

)
= f (x) + mh2

(
∆f (x)− f (x)

∆q(x)

q(x)

)
I Left normalize: D̂ ≡ K̂ 1 = 1−mh2 ∆q(x)

q(x)

K̂ f
D̂

= f (x) + mh2∆f (x)
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CONTINUOUS K-NEAREST NEIGHBORS (CKNN)

I Let xk denote the k th nearest neighbor of x

CkNN: Edge between the points x , y if ||x−y ||√
||x−xk || ||y−yk ||

< δ

I Corresponds to variable bandwidth kernel with β = −1/d

I Corollary: Lun
~f →

−−→
∆g̃ f

I For fixed k , ||x − xk || ∝ q(x)−1/d so β = −1/d

I This is a variable bandwidth kernel with K (t) = 1{t<1} so

K

(
||x − y ||

δ
√

q(x)−1/dq(y)−1/d

)
= 1{ ||x−y||√

||x−xk || ||y−yk ||
<δ

}
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CKNN CONVERGENCE RESULT

I Define the unnormalized graph Laplacian Lun = D − K

I Corollary: Lun
~f →

−−→
∆g̃ f

I Only β = −1/d yields a Laplace-Beltrami operator

I g̃ ≡ q2/dg is a conformal change of metric onM

I Natural volume form:

dṼ =
√
|g̃| =

√
|q2/dg| = q

√
|g| = q dV

I volg̃(M) =
∫
M dṼ =

∫
M q dV = 1
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ATTRACTOR CLUSTERING
Multi-stability in Nematic Liquid Crystals:

Finding good metrics/coordinates:
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THE DISCRETE EXTERIOR CALCULUS (DEC)

I Estimate Laplace-de Rham: ∆k = δk+1dk + dk−1δk

I Compute Betti numbers: Hk (M) ∼= Kernel(∆k )

I Eigenforms in the kernel of ∆1 on T 2:
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I Representatives of H1(M) on a genus two surface:
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