The Mathematics of Manifold Learning

Tyrus Berry
George Mason University

April 6, 2019

Motivating Example: Nematic Liquid Crystal

Finding Hidden Structure in Data

The sub-image geometry:

Outline

Lessons:

- Dimensionality: Intrinsic vs. Extrinsic
- Nonlinearity: Fourier Basis
- Non-uniformity: Respect the density

Challenges:

- Curse-of-dimensionality (intrinsic)
- Extrapolation

Intrinsic vs. Extrinsic Dimension

	θ	x	y
	0.0628	0.9980	0.0628
	0.1257	0.9921	0.1253
100 points on a Circle	0.1885	0.9823	0.1874
	0.2513	0.9686	0.2487
	0.3142	0.9511	0.3090
${ }^{0.5} 4$	0.3770	0.9298	0.3681
+	0.4398	0.9048	0.4258
,	0.5027	0.8763	0.4818
	:	:	
	6.0319	0.9686	-0.2487
$\begin{array}{llll}1 & 0.5 & 0 & 0.5\end{array}$	6.0947	0.9823	-0.1874
	6.1575	0.9921	-0.1253
	6.2204	0.9980	-0.0628
	6.2832	1.0000	-0.0000

Intrinsic vs. Extrinsic Dimension

- Intrinsic Dimension = 1

$$
\theta_{i}=2 \pi \frac{i}{100}
$$

- Extrinsic Dimension = 2

$$
\left(x_{i}, y_{i}\right)=\left(\cos \left(\theta_{i}\right), \sin \left(\theta_{i}\right)\right)
$$

Intrinsic vs. Extrinsic Dimension

- Intrinsic Dimension = 1

$$
\theta_{i}=2 \pi \frac{i}{100}
$$

- Extrinsic Dimension $=3$
$\left(x_{i}, y_{i}, z_{i}\right)=\left(\cos \left(\theta_{i}\right), \sin \left(\theta_{i}\right), 0\right)$

Intrinsic vs. Extrinsic Dimension

- Intrinsic Dimension = 1

$$
\theta_{i}=2 \pi \frac{i}{100}
$$

- Extrinsic Dimension = 3

$$
\begin{aligned}
& x_{i}=\cos \left(\theta_{i}\right) \\
& y_{i}=\sin \left(\theta_{i}\right) \\
& z_{i}=x_{i}+y_{i}
\end{aligned}
$$

Intrinsic vs. Extrinsic Dimension

- Intrinsic Dimension = 1

$$
\theta_{i}=2 \pi \frac{i}{100}
$$

- Extrinsic Dimension $=2+n$

$$
\begin{aligned}
& x_{i}=\cos \left(\theta_{i}\right) \\
& y_{i}=\sin \left(\theta_{i}\right) \\
& z_{i}^{1}=a_{1} x_{i}+b_{1} y_{i} \\
& \vdots \\
& z_{i}^{n}=a_{n} x_{i}+b_{n} y_{i}
\end{aligned}
$$

A is a $(n+2) \times 2$ matrix

Solution: Linear Algebra!

- Hidden Data, $\left[\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{N}\right]$
- Ideal Representation, $x_{i}=\cos \left(\theta_{i}\right), y_{i}=\sin \left(\theta_{i}\right)$

$$
X=\left[\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & \cdots & x_{N} \\
y_{1} & y_{2} & y_{3} & \cdots & y_{N}
\end{array}\right]
$$

- Given Data: $Y=A X$
$Y=\left[\begin{array}{ccccc}x_{1} & x_{2} & x_{3} & \cdots & x_{N} \\ y_{1} & y_{2} & y_{3} & \cdots & y_{N} \\ a_{1} x_{1}+b_{1} y_{1} & a_{1} x_{2}+b_{1} y_{2} & a_{1} x_{3}+b_{1} y_{3} & \cdots & a_{1} x_{N}+b_{1} y_{N} \\ a_{2} x_{1}+b_{2} y_{1} & a_{2} x_{2}+b_{2} y_{2} & a_{2} x_{3}+b_{2} y_{3} & \cdots & a_{2} x_{N}+b_{2} y_{N} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n} x_{1}+b_{n} y_{1} & a_{n} x_{2}+b_{n} y_{2} & a_{n} x_{3}+b_{n} y_{3} & \cdots & a_{n} x_{N}+b_{n} y_{N}\end{array}\right]$
- Rows of Y are linearly dependent!

Solution: Linear Algebra!

- Given data $Y=A X$ where both A and X are unknown
- Linear dependence means the rows, Y_{i}, are redundant:

$$
\vec{c}^{\top} Y=c_{1} Y_{1}+c_{2} Y_{2}+\cdots+c_{n} Y_{n}=\overrightarrow{0}
$$

- There exists $\vec{c}=\left(c_{1}, \ldots, c_{n}\right) \neq 0$ such that $\vec{c}^{\top} Y=\overrightarrow{0}$
- $\vec{c}^{\top} Y=\overrightarrow{0}$ if and only if $\vec{c}^{\top} Y Y^{\top} \vec{c}=\overrightarrow{0}^{\top} \overrightarrow{0}=0$
- So \vec{c} is eigenvector of $Y Y^{\top}$ with eigenvalue zero

Principal Component Analysis (PCA)

- Compute the eigenvectors/values of $Y Y^{\top}=U \wedge U^{\top}$
- Sort the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$
- Eigenvalue ≈ 0 represent linear redundancies
- Principal Components: Eigenvectors u_{i} with largest λ_{i}
- Choose $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}$ corresponding to $\lambda_{1}, \ldots, \lambda_{p}$
- Form the projection matrix $P=\left[\begin{array}{llll}\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{p}\end{array}\right]$
- Remove redundancies: $\tilde{X}=P Y$

Principal Component Analysis (PCA)

$$
\mathbf{Y} \quad \Rightarrow \quad \tilde{\mathbf{X}}=\mathbf{P Y}
$$

Principal Component Analysis (PCA)

- Matrix times intrinsic data \Rightarrow extrinsic redundancy
- These linear redundancies are easy to remove
- PCA projects the data to remove redundancy
- Does this really happen?

Does this really happen?

Consider 11×11 subimages from a pattern:

Does this really happen?

PCA Coordinates

Subimage Coordinates

Does this really happen?

PCA Coordinates

Does this really happen?

Fish Scales

PCA Coordinates

Does this really happen?

Honeycomb

PCA Coordinates

Principal Component Analysis (PCA)

- Linear redundancies are easy to remove

$$
c_{1} Y_{1}+c_{2} Y_{2}+\cdots c_{n} Y_{n}=\overrightarrow{0}
$$

Principal Component Analysis (PCA)

- Linear redundancies are easy to remove

$$
c_{1} Y_{1}+c_{2} Y_{2}+\cdots c_{n} Y_{n}=\overrightarrow{0}
$$

- PCA projects the data to remove redundancy

Principal Component Analysis (PCA)

- Linear redundancies are easy to remove

$$
c_{1} Y_{1}+c_{2} Y_{2}+\cdots c_{n} Y_{n}=\overrightarrow{0}
$$

- PCA projects the data to remove redundancy
- What about nonlinear redundancies?

$$
F\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)=\overrightarrow{0}
$$

Principal Component Analysis (PCA)

- Linear redundancies are easy to remove

$$
c_{1} Y_{1}+c_{2} Y_{2}+\cdots c_{n} Y_{n}=\overrightarrow{0}
$$

- PCA projects the data to remove redundancy
- What about nonlinear redundancies?

$$
F\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)=\overrightarrow{0}
$$

- Example, Circle: $Y_{1}=\cos (\theta), Y_{2}=\sin (\theta)$

$$
F\left(Y_{1}, Y_{2}\right)=Y_{1}^{2}+Y_{2}^{2}-1=\overrightarrow{0}
$$

Manifold Learning

A manifold \mathcal{M} is a topological space that is locally Euclidean.

Manifold Learning

Around each point $x \in \mathcal{M}$ we have an open neighborhood $U_{x} \subset \mathcal{M}$ and a homeomorphism $H_{x}: U_{x} \rightarrow \mathbb{R}^{m}$

Manifold Learning

-When does a nonlinear redundancy define a manifold?

$$
\mathcal{M}=\left\{\vec{y} \mid F\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\vec{a}\right\} \subset \mathbb{R}^{n}
$$

Manifold Learning

- When does a nonlinear redundancy define a manifold?

$$
\mathcal{M}=\left\{\vec{y} \mid F\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\vec{a}\right\} \subset \mathbb{R}^{n}
$$

- Need to be able to solve for the last $n-m$ variables:

$$
\begin{aligned}
\vec{a} & =F\left(y_{1}, \ldots, y_{m}, y_{m+1}, \ldots, y_{n}\right) \\
& =F\left(y_{1}, \ldots, y_{m}, G_{1}\left(y_{1}, \ldots, y_{m}\right), G_{2}\left(y_{1}, \ldots, y_{m}\right), \ldots, G_{n-m}\left(y_{1}, \ldots, y_{m}\right)\right)
\end{aligned}
$$

Manifold Learning

- When does a nonlinear redundancy define a manifold?

$$
\mathcal{M}=\left\{\vec{y} \mid F\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\vec{a}\right\} \subset \mathbb{R}^{n}
$$

- Need to be able to solve for the last $n-m$ variables:

$$
\begin{aligned}
\vec{a} & =F\left(y_{1}, \ldots, y_{m}, y_{m+1}, \ldots, y_{n}\right) \\
& =F\left(y_{1}, \ldots, y_{m}, G_{1}\left(y_{1}, \ldots, y_{m}\right), G_{2}\left(y_{1}, \ldots, y_{m}\right), \ldots, G_{n-m}\left(y_{1}, \ldots, y_{m}\right)\right)
\end{aligned}
$$

- Implicit Function Theorem: If the Jacobian matrix $D F(\vec{y})$ is full rank then the functions $G_{1}, \ldots G_{n-m}$ exist near \vec{y}

Manifold Learning

- When does a nonlinear redundancy define a manifold?

$$
\mathcal{M}=\left\{\vec{y} \mid F\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\vec{a}\right\} \subset \mathbb{R}^{n}
$$

- Need to be able to solve for the last $n-m$ variables:

$$
\begin{aligned}
\vec{a} & =F\left(y_{1}, \ldots, y_{m}, y_{m+1}, \ldots, y_{n}\right) \\
& =F\left(y_{1}, \ldots, y_{m}, G_{1}\left(y_{1}, \ldots, y_{m}\right), G_{2}\left(y_{1}, \ldots, y_{m}\right), \ldots, G_{n-m}\left(y_{1}, \ldots, y_{m}\right)\right)
\end{aligned}
$$

- Implicit Function Theorem: If the Jacobian matrix $D F(\vec{y})$ is full rank then the functions $G_{1}, \ldots . G_{n-m}$ exist near \vec{y}
- Sard's Theorem: If F is smooth, then for almost every \vec{a}, the Jacobian $D F(\vec{y})$ is full rank for all $\vec{y} \in \mathcal{M}$

Manifold Learning

- When does a nonlinear redundancy define a manifold?

$$
\mathcal{M}=\left\{\vec{y} \mid F\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\vec{a}\right\} \subset \mathbb{R}^{n}
$$

Manifold Learning

- When does a nonlinear redundancy define a manifold?

$$
\mathcal{M}=\left\{\vec{y} \mid F\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\vec{a}\right\} \subset \mathbb{R}^{n}
$$

- When F is smooth, \mathcal{M} is a manifold for almost every \vec{a}

MANIFOLD \Rightarrow GRAPH

- Represent the nonlinear structure with a graph
- Locally Euclidean \Rightarrow Connect nearby points

MANIFOLD \Rightarrow GRAPH

- Problem: Noise and outliers can lead to bridging

MANIFOLD \Rightarrow GRAPH

- To prevent bridging, edges weighted: $K_{\delta}(x, y)=e^{-\frac{\|x-y\|^{2}}{4 \delta^{2}}}$
- Theorem: Graph encodes all nonlinear information

What is Manifold Learning?

- Manifold learning \Leftrightarrow Estimating Laplace Operator
- Euclidean space:
- Eigenfunctions of Δ are $e^{i \vec{\omega} \cdot \vec{x}}$
- Basis for Fourier transform
- Unit circle:
- Eigenfunctions of Δ are $e^{i k \theta}$
- Basis for Fourier series
- Theorem: Eigenfunctions of Δ give the smoothest basis for square integrable functions on any manifold.

Finding the Laplacian from data

- We have converted our data set to a weighted graph
- Vertices \Rightarrow Data points $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$
- Edges \Rightarrow Pairs of nearest neighbors
- Edge Weights $\Rightarrow K\left(x_{i}, x_{j}\right)=e^{-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{4 \epsilon}}$
- Represented as matrix $K_{i j}=K\left(x_{i}, x_{j}\right)$

Diffusion Maps: The Key Result

1. Start with the matrix
$K_{i j}=e^{-\frac{\left\|x_{i}-x_{i j}\right\|^{2}}{4 \epsilon}}$
2. Find the row sums
$P_{i}=\sum_{j=1}^{N} K_{i j}$
3. Normalize the matrix
$\hat{K}_{i j}=\frac{K_{i j}}{P_{i} P_{j}}$
4. Find the row sums again
$\hat{P}_{i}=\sum_{j=1}^{N} \hat{K}_{i j}$
5. Markov Normalization
$\tilde{K}_{i j}=\frac{\hat{K}_{i j}}{\hat{P}_{i}}$
6. Form the Laplacian matrix
$\tilde{\Delta}=\frac{l-\tilde{K}}{\epsilon}$
Theorem: As $N \rightarrow \infty$ and $\epsilon \rightarrow 0$ we have $\tilde{\Delta} \rightarrow \Delta$

Diffusion Maps Construction

Diffusion Maps Construction

- $\tilde{\Delta}$ approximates the Laplacian Δ
- $\tilde{\Delta}$ encodes the geometry of the data
- Eigenvectors of $\tilde{\Delta}$ approximate eigenfunctions of Δ

Fourier Basis on Manifolds

- Fourier functions $\sin (k \theta)$ are eigenfunctions of $\frac{d^{2}}{d \theta^{2}}$
- Eigenvectors of matrix $\tilde{\Delta}$ approximate eigenfunctions of Δ
- What is so great about these functions?
- Smoothest possible functions on \mathcal{M}
- $\varphi_{0}=$ constant
- φ_{1} contains a single oscillation
- φ_{j} is smoothest function orthogonal to previous

Fourier Basis on Manifolds

Fourier Basis on Manifolds

Forecasting without a Model

$$
\begin{aligned}
& p(x, t) \quad \text { Nonparametric Forecast } \rightarrow p(x, t+\tau) \\
& \downarrow\left\langle p, \varphi_{j}\right\rangle \quad \uparrow \sum_{j} c_{j} \varphi_{j} D_{\mathrm{eq}} \\
& \vec{c}(t) \\
& \xrightarrow{A_{j} \equiv E\left[\left\langle\varphi_{j}, S \varphi \varphi\right\rangle_{p_{e q}}\right]} \vec{c}(t+\tau)=A \vec{c}(t) .
\end{aligned}
$$

- $\vec{c}(t)$ are the generalized Fourier coefficients of p
- Nonlinear dynamics become linear (matrix A) in this basis

MANIFOLD LEARNING \Rightarrow CUSTOM ‘FOURIER’ BASIS

- Optimal basis: Minimum variance $A_{l j} \equiv \mathbb{E}\left[\left\langle\varphi_{j}, S \varphi_{I}\right\rangle_{q}\right]$

Example: Forecasting without a Model

No Model
Perfect Model

Example: Forecasting El Nino

Nonuniform Density: Fixed Balls

Black outlines indicate true clusters:

(a)

(b)
(a) Dense regions bridged before connecting sparse region
(b) Graph connecting all points with distance less than ϵ

$$
\|x-y\|<\epsilon
$$

Nonuniform Density: Nearest Neighbors (NN)

(c)

(d)
(c) Connect each point to its nearest neighbor (NN)
(d) Connect each point to its two nearest neighbors (2NN)

Nonuniform Density: CkNN

(e)

(e) Distance to 10-th nearest neighbor
(f) Continuous k-Nearest Neighbors (CkNN)

$$
\frac{\|x-y\|}{\sqrt{\|x-\operatorname{kNN}(x)\| \cdot\|y-\operatorname{kNN}(y)\|}}<\delta
$$

Nonuniform Density: More data?

(g)
(g) Five times more data, 4 nearest neighbors works

Does nearest neighbors always work given sufficient data?

Nonuniform Density: Conclusion

(h)
(h) Real data has sparse tails: More data = bigger gaps!

Theorem: NN fails even with infinite data. CkNN succeeds.

Improved clustering using CkNN

ImAGE SEGMENTATION

Original Image: Break into subimages

(a)

(b)

(f)

(c)

(g)

(d)

(h)

(e)

(i)

Images produced by Marilyn Vazquez.

IMAGE SEGMENTATION

Clustering shown projected to two principal components all points
with low
density
points
removed

Images produced by Marilyn Vazquez.

ImAge SEGMENTATION

Results - synthetic images

Images produced by Marilyn Vazquez.

Image segmentation: Real images

Images produced by Marilyn Vazquez.

Image segmentation: Real images

(g)

(j)

(h)

(k)

(i)

(I)

Original images by Mark R. Stoudt and Steve P. Mates. Analysis by Marilyn Vazquez.

CURSE-OF-(INTRINSIC)-DIMENSIONALITY

- Try to cut into independent components
- Otherwise math/stat says it is impossible
- Need more/better assumptions and/or questions
- Better assumptions: Smoothness
- Better questions: Feature of interest (supervised)

ExTRAPOLATION

- Given only part of a structure recover the whole

- Need to exploit symmetry

Extrapolation

- Given only part of a structure recover the whole

?
- Need to exploit symmetry

