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Abstract

Global Principal Geodesic Analysis (GPGA) is a new technique for latent vari-
able analysis which is effective and computationally efficient. GPGA builds on
the ideas of Principal Geodesic Analysis (PGA) and applies them in a more gen-
eral setting. The motivation behind GPGA is a general model for latent variables
which formally differentiates latent variable analysis from dimensionality reduc-
tion. This model shows that latent variable analysis cannot hope to preserve the
topology, or even the geometry, of the observed variables. GPGA avoids these
constraints, which allows for more independence in the latent variables.

1 Introduction

High-dimensional data poses a significant challenge to conventional statistics, known as the curse of
dimensionality. Dimensionality reduction techniques attempt to address the problem by assuming
that the data actually lie on a low-dimensional manifold. If this assumption is valid there are many
successful techniques for reducing the dimensionality. The conventional wisdom is that if the data is
“truly” high dimensional then the problem may simply be intractable. However, if the observed vari-
ables can be transformed into independent variables, this would also open the door to conventional
statistics. Searching for independent latent variables is referred to as latent variable analysis.

Latent variable analysis has a different set of goals and priorities than dimensionality reduction.
In dimensionality reduction the goal is to go from the high-dimensional observations to a low-
dimensional embedding which has the same topology and local geometry. However, as we will see,
we cannot hope to preserve the topology and geometry if we want to find the most independent latent
variables. Moreover, we can make these changes and still maintain the probabilistic connection
between the latent and observed spaces. Therefore, we consider latent variable analysis to be a tool
for learning the distribution of the data, not the topological or geometric properties.

This paper introduces a general latent variable model and a new technique for latent variable anal-
ysis called Global Principal Geodesic Analysis (GPGA). GPGA extends the method of Principal
Geodesic Analysis (PGA) to a much wider class of models. This new technique has an efficient
algorithm and does not require a constrained optimization. GPGA is shown to be very effective in
decomposing key examples into their latent variables.

GPGA fills a crucial gap in the current spectrum of nonlinear data analysis tools. However, the
implementation uses some aspects of methods as diverse as Isomap, Locally Linear Embeddings
(LLE), and even Self-Organizing Maps (SOM). Dimensionality reduction techniques such as Isomap
and LLE have useful techniques for learning manifold structure, however, these techniques are con-
strained by topology and geometry preservation. On the other hand, the latent space of SOM allows
topology and geometry to change, but goes too far by throwing out all statistical information. The
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key to alleviating these compromises is a unique model for latent variables which combines a latent
space representation of a manifold with a probability distribution on the latent space.

2 Model for Latent Variables

2.1 Goals and their Consequences

The goal of the latent variable model is to study the statistics of the observed data, with particular
focus on the dependence relationships. This goal will immediately differentiate latent variable anal-
ysis from dimensionality reduction. While dimensionality reduction techniques focus on preserving
the topology or geometry of the data, the goal of latent variables is to introduce as much indepen-
dence as possible into the new representation. We will see that topology and geometry preservation
constrain the amount of independence in the new representation. This change in priorities is a good
choice for applications such as data mining, where the main goal is to find the probability of fu-
ture data lying in various subsets of the observation space. To answer these types of questions, the
topology and geometry of the observed data is not relevant.

To learn the distribution of the observed data we learn a distribution f on the latent space X and a
mapping F : X → M ⊂ Rd into the observation space simultaneously. This allows us to build the
latent space, distribution, and mapping in a way that introduces as much independence as possible
into the latent variables, thereby avoiding the curse-of-dimensionality. Of course, the three elements
of the model, (X, f, F ), are constrained such that the distribution on the latent space must be the
pull back of the distribution on the observed space via the mapping. By understanding this model we
can easily see how various dimensionality reduction techniques restrict the amount of independence
that can be introduced into the latent variables.

If we choose a latent space and a mapping, this will uniquely define the distribution on the latent
space. Moreover, forcing the map to preserve topology or geometry will constrains the distributions
available. To see that this restricts the amount of independence in the latent variables consider an
observation space which is an annulus with uniform radial and angular distributions as in Figure 1.
Topology preserving dimensionality reduction techniques cannot break the annulus. For example,
graph distance based techniques found in [11] such as such as Isomap, Geodesic Nonlinear Mapping
(GNLM), Curvilinear Distance Analysis (CDA), Semi-definite Embedding (SDE), LLE, Laplacian
Eigenmaps (LE) and Isotop all preserve the topology of the annulus. The hole in the annulus shows
up in the probability distribution as a dependence between the variables. However, this dependence
can be eliminated by choosing our latent variables to be angle and radius. These latent variables are
independent, but this latent space has a different topology than the annulus and therefore topology
preserving techniques cannot find this representation. This shows that topology preservation restricts
the amount of independence in the latent variables, and thus we will not restrict ourselves to topology
preserving maps.

Two dimensionality reduction techniques which do break the topology of the annulus are SOM and
GTM, but these still fail to identify the natural latent variables of angle and radius [11]. While this
is partially due to the nature of the neural network algorithms, there is a deeper constraint inherent
to SOM and GTM. These methods find a mapping to a uniform lattice on the latent space, and
thus require the resultant distribution to be uniform. While this certainly makes the latent variables
perfectly independent, it does so at too great a cost. By forcing the distribution to be uniform, the
mapping to the observation space can no longer be assumed to be continuous. Thus, while the latent
distribution is easy to analyze, these results cannot be extrapolated back into the observation space.
At first this may seem contradictory, as we have emphasized that we want to break the topology
but also want the mapping to be continuous. It turns out that we can allow for the mapping to be
discontinuous on a set of measure zero, and this is enough to break the topology as required; for
further information see the next subsection on the formal mathematical model.

So far we have made the case that we cannot restrict the mapping F to be topology preserving and
that we cannot restrict the distribution f to be uniform. This brings us to the geometry preservation
of the mapping F . This is another staple of dimensionality reduction techniques and again we claim
that this is an overly restrictive property to demand of the mapping. If we consider the simple case
of an ellipse in the plane, the x- and y-coordinates will not be independent. However, if we allow
the major and minor axis to be rescaled separately, we can transform the ellipse into a circle which
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Figure 1: On the left we have an annulus with uniform radial and angular distributions. The dependence
between the x-coordinates and y-coordinates cannot be removed without breaking the topology. On the right we
see the new coordinates produced by the GPGA algorithm. The color shows that the new principal component
(x-direction) correlates with the angle along the annulus. We see that the topology of the annulus has been
broken and the new coordinates are independent.

has no linear correlation, thus making the rescaled variables more independent. This rescaling by
different amounts in different directions will distort the geometry of the data. For example, if you
rescale the height and width of a triangle by different amounts you can change the angles.

The GPGA technique for latent variable analysis builds a data driven latent space which is topologi-
cally trivial by analyzing the geodesic graph distances. However, GPGA does not have any inherent
restrictions on the distribution of the data on the constructed latent space. While the current version
of GPGA does not take advantage of the rescaling, it is described in section 3.3 how this will be
accomplished. We believe that this will further improve the results shown in Section 4. The best
technique to analyze the statistics on the latent space will vary depending on what aspect of the
statistics is being studied. The goal of GPGA is to produce as much independence as possible in the
latent space so that whatever statistical technique is chosen will have the greatest chance of success.

These examples show that latent variable analysis cannot be restricted to preserve the topology or
geometry of the observed data. Instead it should find a representation where the latent variables
are as independent as possible, to alleviate the curse of dimensionality, while still maintaining a
continuous mapping from the latent space to the observation space. With these ideas in mind we
introduce the formal mathematical model in the next subsection.

2.2 Mathematical Model

Our general model for the latent variable assumption is a generalization of the latent space typified
by the models of [1, 2] combined with a manifold model such as that found in [7]. As in [1, 2] we
have a d-dimensional observation space y = (y1, ..., yd) ∈ M and an l-dimensional latent space
x = (x1, ..., xl) ∈ X where l ≤ d. We will assume that the latent space X is a compact contractible
subspace of Rl and the observed variables result from a function F : X → M ⊂ Rd which is
one-to-one and continuous with continuous inverse except on a set of measure zero. The observed
variables lie on an l dimensional manifold M = F (X).

Since latent variable analysis intends to reconstruct the latent space X from observing M it is ob-
vious that we cannot hope to preserve the topology of M . Instead we are interested in the statistics
on M , and we want to learn about this by studying the statistics on the simpler latent space X . The
assumption that F is one-to-one and continuous except on a set of measure zero will allow us to lift
distributions on the latent space to the manifold M . While this may seem like a strong assumption,
when M is a compact orientalbe Riemannian Manifold such an F always exists via the exponential
map based at any point on the manifold [9].

The central statistical assumption is that the latent space splits into k independent components so
that the dimension of the i-th component is li and l =

∑k
i=1 li. For convenience we introduce the

partial sums L(s) =
∑s
i=1 li and L(0) = 1. Then if f : X → R is the probability density on the
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latent space it can be decomposed as a product over independent components:

f(x1, ..., xl) =

k∏
i=1

fi(xL(i−1), ..., xL(i))

Now, following [9], we assume that M is a compace orientable Riemannian Manifold and we will
define a volume form dM induced by F . Define a distribution on M via f ; if A is a Borel subset of
M and ξ is a random variable on M we have:

P (ξ ∈ A) =
∫
F−1(A)

f(x)dx =

∫
A

f(F−1(y))|DF−1(y)|dy =

∫
A

dM(y)

Note that if F−1 is not differentiable, we define the probability to be a limit via approximating
functions. Thus we may define the volume form dM(y) = f(F−1(y)))|DF−1(y)|dy so that:
P (ξ ∈ A) =

∫
A
dM(y). This volume form naturally combines information about the geometry of

the manifold and the latent distribution. The GPGA algorithm learns this volume form by recording
the principal vectors and values of the PGA decomposition at a network of points along the manifold.

Furthermore, if we assume that f(x) =
∏
fi(xL(i−1), ..., xL(i)) is a continuous distribution on the

latent space X , then there exists maps Hi : [0, 1]
li → X such that each fi(Hi(xL(i−1), ..., xL(i)))

has uniform marginals. Thus by replacing F with F ◦ H−1i we may assume that the probability
distribution on the latent space has uniform marginal distributions on the latent variables. This is
the key to understanding how GPGA can be extended to rescale the latent variables in a natural way,
this is described in Section 3.3, although this has not been implemented yet. Note that in order to
make this assumption we have implicitly changed the metric on the manifold.

3 Global Principal Geodesic Analysis

3.1 Overview

In this section we introduce a new technique for latent variable analysis called Global Principal
Geodesic Analysis (GPGA). GPGA extends the ideas of another technique called Principal Geodesic
Analysis (PGA) to a more general class of models. Principal Geodesic Analysis was introduced in
[13] as a method for decomposing a Lie Group, and further refined in [14] which provides the
theoretical basis for PGA using differential geometry. The theory shows that a manifold has a de-
composition into a natural set of coordinates, however, in general finding this coordinate system may
be intractable. The technique introduced in [13, 14] is able to approximate the PGA decomposition
locally. Thus, GPGA connects the manifold with a network of geodesic curves, which are used to
tie together all the local PGA decompositions.

We will see that GPGA can be used for latent variable analysis, and that the latent space is data-
driven as in LLE and Laplacian Eigenmaps. However, GPGA does not fix the distribution on the
latent space to be uniform like SOM and GTM. Moreover, our mapping to the latent space is not
determined by a neural network or a constrained optimization. Instead GPGA implicitly exploits the
natural volume form from our latent variable model.

An easily visualized application of GPGA is to an annulus in the plane, shown in Figure 1. As
discussed in Section 2, latent variable analysis should find the independent variables of angle and
radius as the latent space. Bialek and Chigirev in [3] dealt with the fact that the coordinates of the
annulus in the plane are not an optimal representation. In the context of [3] optimality refers to an
information theory metric related to minimum description length, but latent variable analysis gives a
more general explanation. In the context of latent variable analysis, the planar representation is not
optimal because of the removable dependence between the x-coordinates and y-coordinates caused
by the hole in the data.

Bialek’s method and the method of principal curves both look for a lower dimensional manifold
which approximately represents the data, in this case a curve. However, these methods are not
suitable for the current situation since the annulus with uniformly distributed radial and angular co-
ordinates is truly two-dimensional. The GPGA method exploits the orientable Riemannian structure
of the model to find a compatible system of local coordinates which lie along geodesic curves. These
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Figure 2: Above we see two examples of principal geodesics discovered by the GPGA algorithm. On the
left data points are sampled from a uniform distribution on an annulus, and on the right the data is uniform
on a figure-eight. The green curves are the principal geodesics discovered by the GPGA algorithm. The new
coordinates of each data point are be determined by using the PGA decomposition of the nearest point on the
principal geodesic. These coordinates are then adjusted according to the position along the principal geodesic.

local coordinate systems still have the same dimension as the manifold, but the final representation
depends on both the local coordinates and the position relative to the geodesic curves. A more de-
tailed explanation of the GPGA method and algorithm are provided below, but first we show the
application of the method to the annulus.

Example 1: In the application to the annulus the algorithm first finds the principal geodesic, which
is always following the direction of greatest variance, as shown in Figure 2. For computational
efficiency the points of the principal geodesic are chosen iteratively from the actual data set. Since
the angular variance of the annulus is greater than the radial variance, the principal geodesic in this
example follows the angular component. Then every point on the annulus is close enough to the
principal geodesic that it can be given local coordinates based at the nearest point on the principal
geodesic. The final coordinates come from adding the local coordinates to the position of the nearest
point along the principal geodesic. In Figure 1 we see the result, on the left is the original coordinates
and on the right the GPGA coordinates.

3.2 Principal Geodesic Analysis

Principal Geodesic Analysis (PGA) is a generalization of Principal Component Analysis (PCA) to
a non-linear setting. Where PCA projects data onto linear subspaces, PGA projects onto geodesic
submanifolds of a manifold. PGA was successfully applied to Lie Groups in [14], but the PGA
method developed there is valid locally for general compact Riemannian manifolds. The key to
generalizing the PGA algorithm is connecting the local decompositions by a geodesic curves called
principal geodesics. In some ways a principal geodesic is similar to a principal curve [5, 6], however
they optimize different quantities.

For a detailed description of PGA see [14], here we present a condensed version. Let M be a
compact orientable Riemannian n-manifold. Given a point µ ∈ M there is a map Logµ : M →
TµM , which maps the manifold into the tangent space at µ, and a map Expµ : TµM → M back to
the manifold. For a small neighborhood U ⊂ TµM of zero, the image Expµ(U) can be decomposed
into a sequence of submanifolds of codimension one:

V1 ⊂ V2 ⊂ · · · ⊂ Vn = Expµ(U)

such that every geodesic of Vi is still a geodesic in Vj for all j ≥ i. These are called geodesic
submanifolds, and if we choose the sequence which maximizes the variance of each Vi in turn then
the sequence is unique.

In [14], Fletcher and Thomas show that locally we can approximate this sequence by simply per-
forming PCA in the tangent space. Thus if we let u1, ..., un ∈ TµM be the principal vectors ordered
by variance, then

Vi = Expµ(span({u1, ..., ui}) ∩ V )
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is the approximate PGA decomposition. Furthermore, the PCA vectors and the singular values give
the volume form locally. The PGA decomposition is also only valid locally, so we need a way to
extend the decomposition to the entire manifold. This leads us to GPGA, which connects the local
decompositions by a network of geodesics.

3.3 Global Principal Geodesic Analysis

First, note that a PGA decomposition exists uniquely at each point µ ∈ M . Since M is a Rie-
mannian manifold, standard results (see, for example, [12]) tell us that the principal vectors will
vary continuously as we move the point µ on M . Thus we can define a principal geodesic based at
µ ∈M as a geodesic γµ(t) passing through µ such that γ′µ(t) ∈ Tγµ(t)M is always equal to the k-th
largest principal vector at γµ(t). So intuitively a principal geodesic is the geodesic which always
moves in the direction of k-th largest variance, as measured in the tangent space. The existence of
principal geodesics is mentioned in [13, 14]; the novel aspect of GPGA is the use of these curves to
tie together local decompositions.

While both principal geodesics and principal curves are embeddings of curves into the data set, it
is important to differentiate them. Principal curves are restricted by a smoothness constraint, and
optimize the linear projection onto the curve [5]. Principal geodesics are defined by the variance in
the direction of travel, and they optimize projection in the intrinsic metric of the manifold [13, 14].
Principal geodesics are more natural for curved spaces such as Riemannian manifolds. Furthermore,
they have the added benefit of being efficient to find since they do not require a solving a constrained
optimization problem like principal curves.

Now we can define the first GPGA component of a point x ∈M by:

π1(x) = arg mint{d(x, γµ(t))}
which is the coordinate of the point on the principal geodesic which is closest to x.

Note that π1 is only defined up to the parameterization of the principal geodesic γµ, so we have a
choice. If we are interested in the individual distributions of the latent variables we should param-
eterize the principal geodesic according to its geodesic length in the observation space. This will
preserve aspects such as variance so that latent variables can be compared directly. On the other
hand, if we were only interested in the dependence relationships of the latent variables could now
rescale as described in Section 2. While this feature has not been implemented yet, it is a promising
course for further research. In this case we would choose γµ : [0, 1] → M such that the number
of points in π−11 ([a, b]) is proportional to b − a, which would insure that the distribution of points
along the principal geodesic is uniform. Thus the parameterization of the principal geodesics can
determine which aspects of the distribution we are emphasizing in the latent space.

If every point is close enough to the principal geodesic that it lies in the PGA decomposition of a
point on the principal geodesic then we are done. Each point will have new coordinates given by
(π1(x), 0, ..., 0) + PGA(x), where PGA(x) gives the coordinates of the PGA decomposition in the
neighborhood containing x. Otherwise, if not every point is covered, we need to iteratively repeat
the process by constructing more principal geodesics which branch off perpendicular to the first
principal geodesic to reach the remaining points. This process may need to be iterated up to n times
until all points are reached by some branch of a geodesic. In this way we construct further maps
π2, ..., πn which project onto the needed number of branches, and the final coordinates of each point
are (π1(x), ..., πn(x)) + PGA(x).

3.4 Algorithm and Complexity

Below we outline the GPGA algorithm. The main procedure is a single-source shortest path pro-
cedure on the neighbor graph of the observed data. Since the graph is sparse, a Fibonacci Heap
performs Dijkstra’s algorithm in O(N logN) time, where N is the number of observed points. This
procedure must be performed multiple times, at most N/k for a k-nearest neighbor graph. Thus the
maximum complexity is O(N2 logN) which is the same as that of Isomap.

Note that the algorithm saves the original coordinates of each point on the subgraph of principal
geodesic points. Along with the principal vectors at each point, this gives a representation of the
mapping from the latent space to the observation space. Furthermore, we represent the volume form
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on the observed manifold with the principal vectors and eigenvalues of the PCA decomposition
at each point on the principal geodesics. In most applications one needs to extrapolate statistical
results on the latent space to give results on the observation space. The mathematical model shows
that the volume form relates the distributions on the latent space and the observation space, so these
outputs are useful.

GPGA Algorithm

Inputs: Collection of N points Y = {yi}Ni=1 with d components.
Either k for k-nearest neighbor or δ for fixed neighborhoods or neither for adaptive.

Outputs: New coordinates X = {xi}Ni=1 with l ≤ d components.
Subgraph G of neighbor graph on initial dataset Y .
Collection of principal vectors and values, for each Vertex of G.

begin:
Choose an initial point x̂ = x0 from the observed data (many methods).
while, not all observed points have been classified:

Add x̂ to the subgraph G for output.
Compute single-source shortest path procedure based at x̂.
Estimate Log map based at x̂ to produce points Ŷ in the tangent space at x̂.
Compute the PCA decomposition of the Ŷ points.
Store these vectors and values for output.
Choose the next point, x̂, in the direction of the largest principal vector.

end while

There are several candidates for the initial point x0, the most promising is the geodesic mean, which
can be approximated efficiently as shown in [13].

4 Performance and Conclusions

Testing the independence of latent variables requires going beyond linear correlation. Some common
metrics are mutual information, correlation ratio, and higher-order moments of the joint distribution.
Since the mutual information of random variables is zero if and only if the random variables are
independent, this metric has the most solid theoretical foundation. However, since we would like
to compare various data sets we use a standardized version of mutual information sometimes called
redundancy. Thus we can compute the redundancy between the sequence of x-coordinates and the
sequence of y-coordinates for the original data, and compare this to the redundancy in the new latent
variables. If the new redundancy is smaller then we conclude that the algorithm was successful in
making the variables more independent.

In order to see the robustness of the GPGA algorithm we introduce a distorted annulus, see Figure
4, where the radius is now correlated with the angle. The algorithm was applied to five different
versions of this distorted annulus with varying strengths of this correlation. For each strength level
we applied the algorithm to five separate random samplings from the distorted annulus. The reduc-
tion in redundancy was very consistent, with an overall average decrease of 42%. However, we can
see in Figure 4 that the GPGA decomposition still has a residual correlation. We expect a further
reduction in redundancy when we implement the normalization as described in Section 3.3.

The GPGA algorithm is capable of decomposing even more complex topologies, as seen in 3. In this
example there are two circles which need to be cut, and the cuts are effectively taking place at the
ends of the principal geodesic. The gradient coloring shows how the shape is smoothly transformed
into independent components. In this case the redundancy in the observed x- and y-coordinates
was 0.147 and the GPGA coordinates had a redundancy of 0.011, a reduction of 92.5%, which is a
significant improvement in independence.

While much has been accomplished in the area of dimensionality reduction, published techniques
are not suitable for high-dimensional data with many independent components. In these cases, only
latent variable analysis provides relief from the curse of dimensionality. However, to identify the
most independent latent variables we must reject the dimensionality reduction concepts of topology
and geometry preservation. Instead we only ask that the model allow us to transfer probabilistic
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Figure 3: An example of a more complex topology, on the left are the observed variables with the principal
geodesic shown as a green curve. On the right is the GPGA decomposition. In this case the redundancy was
reduced from 0.147 in the observed coordinates to 0.011 in the latent variables discovered by GPGA.

Figure 4: In the top row we have the observed data on a distorted annulus where the angles are uniformly
distributed but the radius is correlated with the angle. Below we have the GPGA decomposition of the data.
The left two pictures are colored by the observed angle and the right two are colored by the observed radius.
Thus we can clearly see that GPGA effectively recovers the latent variables of angle and radius.

questions between the latent space and the observation space. Global Principal Geodesic Analy-
sis (GPGA) is not constrained by the topology or geometry of the observed data, and thus is able
to introduce greater independence in the latent variables than dimensionality reduction techniques.
Moreover, the GPGA mapping has enough continuity to connect the latent and observed distribu-
tions. It has an efficient algorithm, comparable with the best dimensionality reduction techniques,
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and good performance in an objective metric. As we have seen, the proficiency of GPGA results
from its ability to conveniently decouple the competing goals of dimension reduction and latent
variable analysis.
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