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Overview
A necessary ingredient of an ensemble Kalman filter is covariance inflation, used to con-
trol filter divergence and compensate for model error. There is an ongoing search for infla-
tion tunings that can be learned adaptively. Early in the development of Kalman filtering,
Mehra enabled adaptivity in the context of linear dynamics with white noise model errors
by showing how to estimate the model error and observation covariances. We propose
an adaptive scheme, based on lifting Mehra’s idea to the nonlinear case, that recovers the
model error and observation noise covariances in simple cases, and in more complicated
cases, finds a natural additive inflation that improves state estimation.

Adaptive Scheme for Kalman Filtering
In its most general form our adaptive scheme can be interpreted as an extension of the
Kalman update (red) which updates the matrices Qk and Rk using the filter innovation
εk as shown below (blue). Let xfk = Fk−1x
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where τ is called the stationarity parameter and controls the speed at which the Qk and
Rk estimates adapt. In the examples we show that when the model error and observation
noise are given by Gaussian white noise our adaptive scheme recovers the covariances
of these distributions as Qk and Rk. For more realistic types of model error we interpret
Qk as an adaptive inflation and demonstrate improvements in state estimation. We will
demonstrate the adaptive scheme in the context of the ensemble Kalman filter (EnKF)
and the local ensemble transform Kalman filter (LETKF).

Application to Lorenz96
We will apply the adaptive EnKF to the 40-dimensional Lorenz96 model

dxi

dt
= −xi−2xi−1 + xi−1xi+1 − xi + F

where x = [x1(t), . . . , x40(t)] ∈ R40 and the superscript refers to the ith vector coordinate.
We work in the discrete setting by defining f (xk−1) to be the result of integrating the above
system for ∆t = 0.05 with initial condition xk−1. Unless otherwise stated we will use F = 8
and the full observation h(xk) = xk. We augment the model with Gaussian white noise

xk = f (xk−1) + ωk ωk = N (0, Q)

yk = h(xk) + νk νk = N (0, R).
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Above we illustrate the effect of using sub-optimal filters by running a conventional EnKF
on data simulated from the Lorenz96 model with Q = (0.01)I40 and R = (0.2)I40. The
RMS error of the signal prior to filtering was

√
0.2 ≈ 0.45 (red dotted line) the RMSE of the

optimal filter using Qk = Q and Rk = R was 0.20 (black dotted line). We show the effect
of varying Rk when Qk = Q and the effect of varying Qk when Rk = R. We see that in
one extreme the filter becomes trivial, and in the other extreme it is possible for the filter to
actually degrade the signal. This shows the importance of Qk and Rk to filter performance.

Gaussian White Noise Covariances
In this example we show the long term performance of the adaptive EnKF by simulating
Lorenz96 for 300000 steps with Q and R matrices that were randomly generated symmetric
positive definite matrices (shown below, first column). We then initialized Qk and Rk as
diagonal matrices (below, second column). The adaptive EnKF was then applied to the
simulated data with stationarity τ = 20000 and the final estimates of Qk and Rk are shown
in the third column along with the final differences Q−Qk and R−Rk in the forth column.
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In the top right plot we show how the RMS difference between the entries of Q and Qk
declines as the adaptive EnKF recovers the covariance structure. The limiting RMS differ-
ence can be decreased by increasing the stationarity τ , however this increases the number
of steps needed for the adaptive EnKF to converge. In the bottom right plot we show the
RMS error of the state estimates for adaptive EnKF (blue) compared to the conventional
EnKF run with the true Q and R (black) and with the diagonal guess matrices (red).

Sparse Observations with Gaussian Noise
In this example we apply the adaptive EnKF to a low-dimensional observation. In par-
ticular we use a sparse observation which is given by observing 10 equally spaced sites
among the 40 total sites. Since Hk−1 or HkFk−1 will not be invertible for rank deficient
observations, we parameterize Qek =

∑
qpQp as a linear combination of fixed matrices Qp.

For this example we choose a block constant parameterization with 100 blocks of size 4×4.
Due to symmetry there are 55 parameters which allows us to solve for Qek at each step.
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To illustrate the inflation found by the adaptive EnKF we generated a random Q matrix with
the block constant structure and a random R matrix (above, first column). The Lorenz96
model was simulated for 100000 steps with these covariances. We chose diagonal guess
matrices (second column) and ran the adaptive EnKF with the block constant parameteri-
zation of Qk and τ = 15000. The final estimates of Qk and Rk are shown above in the third
column along with the final differences Q−Qk and R−Rk. In the fifth column we show the
RMSE of the state estimates for the adaptive EnKF (blue) compared to the conventional
EnKF run with the true Q and R (black) and the diagonal guess matrices (red).

Such a low dimensional observation dramatically increases the RMSE of the state es-
timate, as shown above. Moreover, we now observe filter divergence, where the state
estimate trajectory completely loses track of the true trajectory. Filter divergence occurs
only when the true matrix Q is used in the filter, whereas both the initial guess and the
final estimate produced by the adaptive EnKF are inflated. This example shows how the
breakdown of the assumptions of the EnKF (local linearizations, Gaussian distributions)
can lead to model error even when the nonlinear dynamics are known. In the presence
of this model error, our adaptive EnKF must be interpreted as an inflation scheme and we
judge it by its performance in terms of RMSE rather than recovery of the underlying Q.

Compensating for Model Error
This example shows that the covariance structure Qk can compensate for systematic
model error. We simulated Lorenz96 with full observation for 10000 steps with F = 8
and then chose 40 fixed random values of F i = N (8, 16) and continued the simulation for
another 10000 steps. The model used by the filters had F = 8 fixed. The matrices below
show the true Q and R, the diagonal guess, the final estimates, and the final differences,
as in previous examples. In the presence of the model error the adaptive EnKF still re-
covers R and in the top right figure we show that the inflation variances found in the final
Qk (blue) correlated with the amount of model error (black) at each site. The adaptive
EnKF significantly reduced the RMSE of the state estimate (blue) compared to that of a
conventional EnKF with the true Q and R matrices (red). The RMSE for an oracle EnKF
(given the parameters F i) is in black, and the adaptive EnKF with Qk diagonal is in green.

0 10 20 30 400

10

20

30

40

50

60

Site Number

(Q
f) ii R

ela
tiv

e 
Ch

an
ge

0

50

100

150

Fi  M
od

el 
Er

ro
r (

%
)

0 0.5 1 1.5 2
x 104

0

0.2

0.4

0.6

0.8

Filter Steps

RM
SE

An Adaptive LETKF
This example shows that the adaptive scheme can naturally integrate into the local en-
semble transform Kalman filter (LETKF). The LETKF uses the spatial structure of the
state space to perform the Kalman update locally. We used the algorithm of Ott et al. and
performed the local Kalman update at each site using a local region with 11 sites (l = 5)
and a global ensemble with 22 members. Since the LETKF uses a Kalman update for
each local region, we simply estimated 40 separate 11× 11 local matrices Qik and Rik using
our adaptive scheme. For display purposes we integrated the final estimates into a global
versions Qk and Rk shown in the third column. The adaptive LETKF (blue) significantly
improved the RMSE compared to simply using a diagonal inflation (red).
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