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Abstract

Let n be a nonnegative integer, and let ã = (a1, . . . , ak) be a k-tuple
of positive integers. The term denumerant, introduced by Sylvester,
denotes the number D(n; ã) of ways one can partition the number
n into parts a1, . . . , ak. In this article we use direct combinatorial
methods to find concrete and simply expressible upper and lower
bounds for D(n; ã) in terms of n, k and general ã, both bounds having
the known asymptotic value of D(n; ã) for large n. Finally we derive
additional properties of D(n; ã) that hold for infinitely many n.
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1 Introduction

Partitions of a nonnegative integer n have been studied extensively. Some
types of partitions have already been studied intensively, while other types
are still being studied, although from a different perspective than was done
in the late nineteenth century. The use of generating functions has been
proved to be invaluable in the study of partitions, but knowing the generat-
ing function for a certain combinatorial number sequence does not always
yield accessible information for the working mathematician and computer
scientist.

The purpose of this article is to demonstrate that in certain situations
using direct combinatorial methods and elementary number theory can pro-
vide more concrete information than by considering the corresponding gen-
erating function.

We will be considering general restricted partitions of a nonnegative
integer n, defined in Definition 1.1. By a restricted partition of n into k
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parts, we mean a decomposition n = y1 + · · ·+ yk, where y1 ≥ · · · ≥ yk ≥ 1
are integers. The number of such decompositions y1, . . . , yk will be denoted
by pk(n). Note that if we let y′

i = yi −1 for each i ∈ {1, . . . , k}, then we see
that pk(n + k) is the number of decompositions n = y′

1 + · · · + y′
k, where

y′
1 ≥ · · · ≥ y′

k ≥ 0.
Consider now the equation x1 + 2x2 + · · · + kxk = n. Denote the

number of solutions in nonnegative integers x1, . . . , xk by dk(n). If we let
y′

i = xi +xi+1+ · · ·+xk for each i ∈ {1, . . . , k}, then this change of variables
shows that dk(n) = pk(n+k), or equivalently pk(n) = dk(n−k). Since now
the generating function for the dk(n)’s where n ≥ 0, is given by

∑

n≥0

dk(n)Xn =
1

(1 − X)(1 − X2) · · · (1 − Xk)
,

the number of restricted partitions, pk(n), can be read from the expansion
of this generating function also. Hence, we can view restricted partitions
as the number of nonnegative integer solutions to a certain linear equation.

Consider a natural generalization of the above, the partition of n into
specified parts. As stated in [1, p. 117], the following definition is due to
J. J. Sylvester.

Definition 1.1 Let n be a nonnegative integer and ã = (a1, . . . , ak) be a
k-tuple of positive integers. A partition of n into positive parts a1, . . . , ak

is a decomposition
n = a1x1 + · · · + akxk, (1)

where x1, . . . , xk are nonnegative integers. The number of such solutions
in x1, . . . , xk to (1) is called denumerant and is denoted by D(n; ã) or
D(n; a1, . . . , ak).

Remarks: (i) The term “denumerant” is also due to Sylvester, who seemed
to have been quite inventive when it came to new words and phrases. (ii)
The problem of finding all solutions to (1) is sometimes called the money
change problem, since it can be phrased as: “Find all ways one can change
n dollars into coins or bills of size a1, . . . , ak,”[2], [3, p. 327].

If Dã(X) denotes the generating function for the D(n; ã)’s where n ≥ 0
for a fixed k-tuple ã, then

Dã(X) =
∑

n≥0

D(n; ã)Xn =
1

(1 − Xa1)(1 − Xa2) · · · (1 − Xak)
,

and hence we have in particular that D(n; 1, . . . , k) = dk(n) = pk(n + k).
It is precisely this generating function Dã(X) that is quite hard to expand
for a general k-tuple ã.
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2 Some History

Since denumerants count general kinds of restricted partitions of n, their
history is like that of partitions in general, and is split into two eras, the
old school and the new school.

The old school started around 1850 and lasted about one century until
1950 or so. Some scholars have pinpointed the end of this era as 1917 [4],
[5], by the announcement of “Une Formule Asymptotique pout le Nombre
des Partitions de n,” Comptes Rendus, in January 2nd, 1917, and later
the appearance of the full paper [6] on the circle method for asymptotics.
This apparently pushed the Cayley-Sylvester ideas to the background. Still
some papers, with the old school flavor, were published after 1917, but
to a much less extent than before. The old school includes work of many
pioneers such as A. Cayley, J. J. Sylvester, P. A. MacMahon, A. DeMorgan,
G. H. Hardy, E. M. Wright, S. Ramanujan, and E. T. Bell to name a few.
The results from this era can be characterized by powerful use of generating
functions. This was the era of exactness and hardly any estimations nor
approximations were made.

The new school includes estimations and some special cases which were
left over by the old school, some “neat tricks” for an exact solution for
a given k-tuple ã. Special cases have been considered, when a general
exact solution is hard to obtain. In [7, p. 113] the case where k ≤ 4 is
considered, and in [2] some algorithmic approximations for the case k = 3
are considered, where the ai’s are further assumed to be pairwise relatively
prime. Some identities and methods of computing are considered in [8]
and [9]. In [10] an expression for the generating function Dã(X) is given
as P ( 1

1−X
) + R(X), where P (X) is a polynomial and R(X) is a rational

function with a denominator not divisible by 1 − X . There an explicit
formula for P (X) is given in terms of Bernoulli numbers. In [11] an upper
bound for D(n; ã) is given in terms of n, k and ã, which is similar to what
will obtained in Section 3. We will improve this upper bound, provide a
lower bound and some further results that hold for infinitely many n, that
are evenly distributed among the nonnegative integers.

For each specific k-tuple ã one can compute D(n; ã) exactly as a function
of n by considering the partial fraction decomposition of the generating
function Dã(X), and then using the extended binomial theorem on terms
of the form 1/(1−ξX)i to write D(n; ã) as a linear combination of binomial
coefficients. As an example of this method, one can derive De Morgan’s
result stated in [1, p. 119] that D(n; 1, 2, 3) = d3(n) = [(n + 3)2/12], where
[x] here denotes the integer nearest to x. Precisely this is demonstrated
in [12, p. 132]. Another nice example can be found in [3, p. 344], where full
advantage is taken of the particular values of the a1, . . . , ak to obtain the
partial fraction decomposition of the generating function Dã(X) and hence
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an exact formula for D(n; ã).
Although this partial fraction method is primarily used to compute

exact values of D(n; ã) for specific ã, it can also be used to obtain different
exact results. As an example, the following “old-school-like” theorem is due
to E. T. Bell [13]:

Theorem 2.1 Let n be a nonnegative integer and ã a k-tuple of positive
integers a1, . . . , ak. If a is the least common multiple of all the ai, then for
each b ∈ {0, 1, . . . , a − 1} the denumerant D(am + b; ã) is a polynomial in
m of degree k − 1.

Bell’s proof in [13] is based on fact that in the partial fraction decomposition
of the generating function Dã(X), every ξ in each term 1/(1 − ξX)i is an
m-th root of unity, which in particular implies that ξam+b is fixed for all
m ≥ 0.

The asymptotic behavior of D(n; ã) can also be obtained by considering
the form of the partial fraction decomposition of Dã(X) if gcd(a1, . . . , ak) =
1: Since there is only one term 1/(1− ξX)i with i = k, and that term has
ξ = 1, all other terms have i ≤ k − 1, and hence 1/(1 − X)k is the only
contributor to the coefficient for nk−1 in D(n; ã). From this we can obtain
that

D(n; ã) ∼
nk−1

(k − 1)!a1 · · · ak

, (2)

where f(n) ∼ g(n) denotes limn→∞ f(n)/g(n) = 1. To demonstrate this
asymptotic value, using the mentioned partial fraction decomposition, is
suggested as an exercise in [12, p. 134]. We note that if exactly k − 1
variables of x1, . . . , xk are given, then the remaining one is determined by
(1). Hence, it should come as no surprise that the asymptotic value given
in (2) has degree at most k − 1 in n.

For a general k-tuple ã it gets harder to obtain further results using the
generating function Dã(X). A result of Sylvester [13] states that D(n; ã) =
A(n) + U(n), where A(n) is a polynomial of degree k − 1 and U(n) is
the “undulant” part, which contains roots of unity. (This is yet another
example of a new phrase invented by Sylvester!) Here

A(n) =

k−1
∑

j=0

αk−1−j

nj

j!
,

where αs is the coefficient of Xs in
∏k

j=1(1−e−ajX)−1. As we can see, it is
hard to obtain any concrete values from this nice result. First of all, we do
not know from this alone about the amplitude of the undulant, how large
it is in terms of ã. Second of all, it seems to be equally as hard to obtain
the coefficients αs as it is to directly obtain D(n; ã) from the generating
function Dã(X).
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Sometimes more accessible information can be derived by considering
direct combinatorial arguments. As an example from [12, p. 133], one
can use combinatorial arguments to prove a special case of (2), that for a

fixed integer k we have D(n; 1, . . . , k) ∼ nk−1

(k−1)!k! . The proof given provides

concrete upper and lower bounds for D(n; 1, . . . , k), both of which have the
same asymptotic value for large n. In fact, the proof yields

1

k!

(

n + k − 1

k − 1

)

≤ D(n; 1, . . . , k) ≤
1

k!

(

n + k(k + 1)/2− 1

k − 1

)

. (3)

Hence, a natural question is whether similar concrete bounds can also be
obtained for the general denumerant D(n; ã). In the next section we obtain
just that.

3 Concrete Bounds

In this section we will derive concrete upper and lower bounds for D(n; ã)
for a general k-tuple ã by using elementary number theoretic and purely
combinatorial arguments.

Notation: Before starting we need to introduce some useful notation.
Let ṽ always denote a k-tuple (v1, . . . , vk). For each i ∈ {1, . . . , k} we
let ṽi = (v1, . . . , vi) be the i-tuple of the first i entries of ṽ. We let Πṽ =
v1 · · · vk be the product of all the entries, and gcd(ṽ) denote gcd(v1, . . . , vk).
Hence, in particular, gcd(ṽi) = gcd(v1, . . . , vi) and Πṽi = v1 · · · vi for each
i ∈ {1, . . . , k}. Further, |ṽ| will always mean the usual L1-norm of ṽ,
that is |v1| + · · · + |vk|. In particular when ṽ is a k-tuple of nonnegative
integers, then |ṽ| = v1 + · · · + vk. For a finite set S however, |S| will
mean the cardinality of S. For two k-tuples ṽ and w̃ their dot product
v1w1 + · · ·+vkwk will be denoted by ṽ · w̃. In particular, (1) can be written
as n = ã · x̃. If t is a real number, then btc denotes the largest integer ≤ t,
and dte denotes the smallest integer ≥ t.

Turning our attention back to denumerants, we now state two basic
facts, both of which are necessary in our arguments to come.

Observation 3.1 For the two tuple ã = (a1, a2) let d = gcd(a1, a2). If
there is one nonnegative solution (x∗

1, x
∗
2) to a1x1 + a2x2 = n, then there

is one with x∗
2 ∈ {0, . . . , a1/d − 1}, and all the nonnegative solutions are

determined by x2 = x∗
2 + ia1/d, where i ∈ {0, . . . , bd(n − a2x

∗
2)/a1a2c}.

Remark: The fact that (x∗
1, x

∗
2) is indeed a nonnegative solution ensures

us that d(n − a2x
∗
2)/a1a2 = dx∗

1/a2 ≥ 0. Hence, the range for i in Obser-
vation 3.1 is proper.
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Lemma 3.2 Let P, q, r be nonnegative integers and f(i) = P − qi a linear
map with f(0) = P ≥ r−1. If N = b(P−r+1)/qc is the largest nonnegative
integer with f(N) ≥ r − 1 then we have

1

q

(

f(0) + 1

r

)

≤

N
∑

i=0

(

f(i)

r − 1

)

≤
1

q

(

f(−1)

r

)

.

Proof. For the upper bound note that
(

f(−1)
r

)

=
∑f(−1)−r

h=0

(

f(−1)−h−1
r−1

)

.

Grouping together every q consecutive terms, from the first term
(

f(−1)−1
r−1

)

we get

(

f(−1)

r

)

=

N
∑

i=0





q
∑

j=1

(

f(i) − j + q

r − 1

)



+

f(N)−r
∑

h=0

(

f(N) − h − 1

r − 1

)

≥ q

N
∑

i=0

(

f(i)

r − 1

)

+

(

f(N)

r

)

,

from which we obtain the upper bound.

For the lower bound we likewise have
(

f(0)+1
r

)

=
∑f(0)−r+1

h=0

(

f(0)−h

r−1

)

Here we group together every q consecutive terms starting with the initial
term

(

f(0)
r−1

)

as far down as we are able. Hence, we have the following
inequality, where we note that f(N)− r + 1 ≤ q− 1 by the definition of N .

(

f(0) + 1

r

)

=

N−1
∑

i=0





q−1
∑

j=0

(

f(i) − j

r − 1

)



+

f(N)−r+1
∑

j=0

(

f(N) − j

r − 1

)

≤ q

N
∑

i=0

(

f(i)

r − 1

)

,

which yields the lower bound, and hence completes the proof. ut

Remark: Clearly the upper bound in Lemma 3.2 holds for any nonnegative
integer N ≤ b(P − r + 1)/qc, but the lower bound only holds when N =
b(P − r + 1)/qc.

Our first result provides a concrete upper bound for D(n; ã) for a general
k-tuple ã. This upper bound has the same asymptotic value as the one given
in (2) when gcd(ã) = 1.

For a fixed k-tuple ã we define k integers A1, . . . , Ak recursively by

A1 = 0,

Ai = Ai−1 + ai

gcd(ãi−1)

gcd(ãi)
, for 2 ≤ i ≤ k.
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Note that for all i we have Ai ≥ i − 1. For the rest of this article Ai will
always have the above meaning, unless otherwise stated. The following
theorem is an improvement of the upper bound given in [11].

Theorem 3.3 For a k-tuple ã of positive integers let d = gcd(ã). We then
have

D(n; ã) ≤
d

Πã

(

n + Ak

k − 1

)

.

Proof. For k = 1 it is a tautology and for k = 2 the theorem is true by
Observation 3.1.

We proceed by induction on k and assume we have the theorem for k−
1 ≥ 1. If d′ = gcd(ãk−1) then d = gcd(d′, ak). If we now let x = (a1/d′)x1+
· · ·+(ak−1/d′)xk−1, then (1) becomes the two variable equation d′x+akxk =
n. If (1) has a nonnegative solution (i.e. all variables are nonnegative,)
then by Observation 3.1 this corresponding two variable equation has a
nonnegative solution (x, xk) with xk = x∗

k ∈ {0, . . . , d′/d − 1}, and all
the nonnegative solutions to (1) must have xk = x∗

k + id′/d for some i ∈
{0, . . . , bd(n−akx∗

k)/d′akc}. Since nonnegative solutions to (1) are included
among those with xk nonnegative, we can deduce the following recursive
formula.

D(n; ã) =
N
∑

i=0

D(n − ak(x∗
k + id′/d); ãk−1), (4)

where N is the largest nonnegative integer with n ≥ ak(x∗
k + Nd′/d). Let-

ting b(i) = n + Ak−1 − ak(x∗
k + id′/d) for each i, the recursive formula (4)

becomes

D(n; ã) =

N
∑

i=0

D(b(i) − Ak−1; ãk−1). (5)

Since Ak−1 ≥ k − 2 we have by induction hypothesis, (5) and Lemma 3.2
that

D(n; ã) ≤
d′

Πãk−1

(

N
∑

i=0

(

b(i)

k − 2

)

)

≤
d

Πã

(

b(−1)

k − 1

)

≤
d

Πã

(

n + Ak

k − 1

)

,

which completes the proof. ut

Remark: We note that (1−Xak)Dã(X) = Dãk−1
(X), and hence we get the

recursive formula D(n; ã)−D(n−ak; ã) = D(n; ãk−1). Summing up D(n−
iak; ã)−D(n−(i+1)ak; ã) = D(n−iak; ãk−1) for each i ∈ {0, 1, . . . , bn/akc−
1}, would seem to imply an easier approach than the one given by using
(4) in the above proof. However, the difficulty here is that most terms
D(n − iak; ãk−1) are zero (roughly (d′ − d)/d of them.) Hence, the upper
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bound obtained inductively in this way is not asymptotically tight as the
one in the above Theorem 3.3.

For the lower bound of D(n; ã), where the k-tuple ã is given, we likewise
define k integers B1, . . . , Bk recursively by

B1 = 0,

Bi = Bi−1 + ai

(

gcd(ãi−1)

gcd(ãi)
− 1

)

− 1, for 2 ≤ i ≤ k.

We now have the following lower bound.

Theorem 3.4 For a k-tuple ã of positive integers let d = gcd(ã). If n ≥
Bk + k − 1 and (1) has one solution, then

D(n; ã) ≥
d

Πã

(

n − Bk

k − 1

)

.

Proof. In the case when k = 1, the theorem is a tautology. In the case
k = 2 the theorem is true by Observation 3.1.

We proceed by induction on k. As in the proof of Theorem 3.3 we have
the recursive formula (4) where xk = x∗

k + id′/d is part of a nonnegative
solution to (1). Let c(i) = n − Bk−1 − ak(x∗

k + id′/d), and let M be the
largest integer with c(M) ≥ k − 2. Since n ≥ Bk + k − 1, and the recursive
definition of Bk in terms of Bk−1, we have that c(0) ≥ k − 2 and hence
M ≥ 0. From (4) we therefore get the following inequality.

D(n; ã) ≥

M
∑

i=0

D(c(i) + Bk−1; ãk−1). (6)

By induction hypothesis, (6) and Lemma 3.2 we get that

D(n; ã) ≥
d′

Πãk−1

(

M
∑

i=0

(

c(i)

k − 2

)

)

≥
d

Πã

(

c(0) + 1

k − 1

)

≥
d

Πã

(

n − Bk

k − 1

)

,

which completes the proof. ut

Remark: The bonds given in Theorems 3.3 and 3.4 are asymptotically
tight. These bounds are easily expressible and, more importantly, easy to
compute from any given k-tuple ã. Both Ak and Bk can be computed
efficiently: Since gcd(ãi) = gcd(ai, gcd(ãi−1)) for each i, the problem of
computing both Ak and Bk are essentially equally as expensive as the com-
putation of the greatest common divisor of two numbers, both less than
or equal to m = max1≤i≤k |ai|, exactly k times. In fact, using the bi-
nary version of the Euclidean Algorithm [14, p. 338], to compute gcd(u, v)
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where u, v ≤ m, takes in the worst case blg mc + 1 arithmetic operations
of additions, subtractions and divisions by 2 (no general divisions!) Hence,
the computation of both Ak and Bk takes at most O(k lg m) arithmetic
operations.

Combining the previous two results, Theorems 3.3 and 3.4, we have the
following.

Corollary 3.5 For a k-tuple ã of positive integers with gcd(ã) = 1 and for
all n ≥ Bk + k − 1 we have

1

Πã

(

n − Bk

k − 1

)

≤ D(n; ã) ≤
1

Πã

(

n + Ak

k − 1

)

.

Remark: Note that in order to prove the above corollary for a general
ã with gcd(ã) = 1, we had to prove slightly more general statements. A
direct inductive proof of upper bound part of Corollary 3.5 can be obtained
under the assumption that the first two factors of ã satisfy gcd(a1, a2) = 1.
However, gcd(ã) = 1 can, of course, hold without any of the

(

k

2

)

pairs
(ai, aj) being relatively prime.

We note that the ordering of the coefficients a1, . . . , ak in the k-tuple
ã is relevant for computations of Ak and Bk. Different orderings can yield
different values of Ak and Bk. In particular, if the two smallest coefficients
are relatively prime, the coefficients should be listed in an increasing order.
Specifically if a1 = 1 (or before reordering, if ai = 1 for some i) then we
have that Ai = |ãi| − 1 and Bi = 1 − i for all i. Hence, from Corollary 3.5
we have in that case

1

Πã

(

n + k − 1

k − 1

)

≤ D(n; ã) ≤
1

Πã

(

n + |ã| − 1

k − 1

)

,

for all n ≥ 0. This coincides with (3) when ã = (1, 2, . . . , k), so Corollary 3.5
is a generalization of (3).

4 Further Concrete Bounds

In the previous section we obtained concrete upper and lower bounds for
D(n; ã) which are valid for any n. Clearly it is not always the case that one
needs the bounds for all n, but rather infinitely many n, which are evenly
distributed among the nonnegative integers, when n tends to infinity. So
in the case where we only need to use a concrete upper or lower bound for
D(n; ã) for infinitely many n, is it possible to get better bounds than those
from the previous section?
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In this final section we will obtain slightly better bounds for a general
k-tuple ã which are better for infinitely many n, that are evenly distributed
among the nonnegative integers. We will prove the following by a different
approach than from previous section.

Theorem 4.1 For any given k-tuple ã and for each nonnegative i, there
are n1, n2 ∈ {i, . . . , i + |ã| − k} such that

D(n1; ã) ≥
1

Πã

(

n1 + k − 1

k − 1

)

, (7)

D(n2; ã) ≤
1

Πã

(

n2 + |ã| − 1

k − 1

)

. (8)

Remark: Since we do not assume ai = 1 for any i, Theorem 4.1 is tighter
than the general bounds in Theorems 3.3 and 3.4.

Before proving Theorem 4.1, we will prove a lemma that has an easy
proof, and Theorem 4.1 will then directly follow.

If k and n are positive integers, let Dk(n) = {ỹ :
∑

yi = n, yi ≥ 0}.
Clearly we have |Dk(n)| =

(

n+k−1
k−1

)

. Let ã be a fixed k-tuple, and let r̃ be
a k-tuple with ri ∈ {0, 1, . . . , ai − 1} for each i ∈ {1, . . . , k}. For a fixed r̃
we let Dk;r̃(n) = {ỹ :

∑

yi = n, yi ≥ 0, yi ≡ ri (mod ai)}. We now have
the disjoint union

Dk(n) =
⋃

r̃

Dk;r̃(n), (9)

where the union runs over all possible r̃ for a given fixed ã.
For each ã and nonnegative n let D(n; ã) = {x̃ : ã · x̃ = n, xi ≥

0}, so |D(n; ã)| is here the denumerant D(n; ã). Since yi = aixi + ri for
each i provides a bijective correspondence between x̃ ∈ D(n − |r̃|; ã) and
ỹ ∈ Dk;r̃(n), we have |D(n − |r̃|; ã)| = |Dk;r̃(n)|. By (9) we then have the
following lemma.

Lemma 4.2 For a nonnegative n and a fixed k-tuple ã we have

∑

r̃

D(n − |r̃|; ã) =

(

n + k − 1

k − 1

)

,

where the sum runs over all the Πã possibilities of r̃.

Proof. (Theorem 4.1:) Let n be given. By Lemma 4.2 we have that the
average value of the D(n − |r̃|; ã) among all the possible r̃, is precisely
1

Πã

(

n+k−1
k−1

)

. Hence, for each fixed n, there are r̃′ and r̃′′ such that

D(n − |r̃′|; ã) ≥
1

Πã

(

n + k − 1

k − 1

)

,

D(n − |r̃′′|; ã) ≤
1

Πã

(

n + k − 1

k − 1

)

.
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Note that both |r̃′| and |r̃′′| are |ã| − k or less, and hence both n − |r̃′|
and n − |r̃′′| are contained in the set {n − |ã| + k, . . . , n}. Hence, letting
i = n − |ã| + k, n1 = n − |r̃′| and n2 = n − |r̃′′|, Theorem 4.1 follows. ut

Corollary 4.3 For a given nonnegative integer N let IN be a set of N
consecutive nonnegative integers. Further, let P1(IN ) denote the set of all
n1 ∈ IN satisfying (7), and P2(IN ) the set of all n2 ∈ IN that satisfy (8).
Then the density of both these sets satisfy

|P1(IN )|, |P2(IN )| ≥

⌊

N

|ã| − k + 1

⌋

.

Remark: When a1 = 1 in a k-tuple ã then both the upper and lower
bounds in Theorem 4.1 coincide with the upper and lower bound given in
Corollary 3.5.
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