Functions and Convergence.

Definition. A piecewise continuous function f(x) defined on an interval I is *bounded* (or L^{∞}) on I if there is a number M > 0 such that $|f(x)| \leq M$ for all $x \in I$. The L^{∞} -norm of a function f(x) is defined by

 $||f||_{\infty} = \sup\{|f(x)| \colon x \in I\}.$

Definition. A piecewise continuous function f(x) defined on an interval I is *integrable* (or of class L^1 or simply L^1) on I if the integral

$$\int_{I} |f(x)| \, dx < \infty.$$

The L^1 -norm of a function f(x) is defined by

$$||f||_1 = \int_I |f(x)| \, dx.$$

Theorem. Let f(x) be L^1 on \mathbf{R} , and let $\epsilon > 0$ be given. Then there exists a number R such that if $g(x) = f(x) \mathbf{1}_{[-R,R]}(x)$ then

$$\int_{-\infty}^{\infty} |f(x) - g(x)| \, dx = \|f - g\|_1 < \epsilon.$$

Definition. A piecewise continuous function f(x) defined on an interval I is square-integrable (or of class L^2 or simply L^2) on I if the integral

$$\int_{I} |f(x)|^2 \, dx$$

is finite. The L^2 -norm of a function f(x) is defined by

$$||f||_2 = (\int_I |f(x)|^2 dx)^{1/2}.$$

Theorem. (Cauchy-Schwarz Inequality) Let f(x) and g(x) be L^2 on the interval I. Then

$$|\int_{I} f(x) g(x) dx| \le ||f||_{2} ||g||_{2}.$$

Theorem. (Minkowski's Inequality) Let f(x) and g(x) be L^2 on the interval I. Then

 $\|f+g\|_2 \le \|f\|_2 + \|g\|_2.$

Theorem. Let f(x) be L^2 on \mathbf{R} , and let $\epsilon > 0$ be given. Then there exists a number R such that if $g(x) = f(x) \mathbf{1}_{[-R,R]}(x)$, then

$$\int_{-\infty}^{\infty} |f(x) - g(x)|^2 \, dx = \|f - g\|_2^2 < \epsilon.$$

Definition. Given $n \in \mathbb{N}$, we say that a function f(x) defined on an interval I is C^n on I if it is *n*-times continuously differentiable on I. C^0 on I means that f(x) is continuous on I. f(x) is C^{∞} on I if it is C^n on I for every $n \in \mathbb{N}$.

We say that f(x) is C_c^n on I if it is C^n on I and compactly supported, C_c^0 on I if it is C^0 on Iand compactly supported, and C_c^∞ on I if it is C^∞ on I and compactly supported.

Theorem. Suppose that I is a finite interval. Then

(a)
$$L^{\infty}(I) \subseteq L^{1}(I)$$

(b) $L^{1}(I) \not\subseteq L^{\infty}(I)$
(c) $L^{\infty}(I) \subseteq L^{2}(I)$
(d) $L^{2}(I) \not\subseteq L^{\infty}(I)$
(e) $L^{2}(I) \subseteq L^{1}(I)$
(f) $L^{1}(I) \not\subseteq L^{2}(I)$

Suppose that *I* is an arbitrary interval. Then (a) $L^{\infty}(I) \not\subseteq L^{1}(I)$ (b) $L^{\infty}(I) \not\subseteq L^{2}(I)$ (c) $L^{2}(I) \not\subseteq L^{1}(I)$ (d) $L^{1}(I) \not\subseteq L^{2}(I)$ (e) $L^{\infty}(I) \cap L^{1}(I) \subseteq L^{2}(I)$ Convergence of Sequences and Series of Functions.

Definition. The sequence $\{f_n(x)\}_{n\in\mathbb{N}}$ on Iconverges pointwise to a function f(x) if for each $x_0 \in I$, the numerical sequence $\{f_n(x_0)\}_{n\in\mathbb{N}}$ converges to $f(x_0)$. We write $f_n(x) \to f(x)$ pointwise on I, as $n \to \infty$. The series $\sum_{n=1}^{\infty} f_n(x) =$ f(x) pointwise on an interval I if for each $x_0 \in$ I, $\sum_{n=1}^{\infty} f_n(x_0) = f(x_0)$.

Definition. The sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ converges in L^{∞} (or uniformly) on I to f(x) if

$$\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0$$

or $\lim_{n\to\infty} ||f_n - f||_{\infty}$. The series $\sum_{n=1}^{\infty} f_n(x) = f(x)$ uniformly on I if the sequence of partial sums $s_N(x) = \sum_{n=1}^N f_n(x)$ converges in L^{∞} to f(x) on I.

Definition. The sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ converges in $L^1(I)$ to the function f(x) if

$$\lim_{n \to \infty} \int_{I} |f_n(x) - f(x)| \, dx = 0$$

or $\lim_{n\to\infty} ||f_n - f||_1 = 0$. The series $\sum_{n=1}^{\infty} f_n(x) = f(x)$ in L^1 on I if the sequence of partial sums $s_N(x) = \sum_{n=1}^N f_n(x)$ converges in L^1 to f(x).

Definition. The sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ converges in $L^2(I)$ to the function f(x) if

$$\lim_{n \to \infty} \int_{I} |f_n(x) - f(x)|^2 \, dx = 0$$

or $\lim_{n\to\infty} ||f_n - f||_2 = 0$. The series $\sum_{n=1}^{\infty} f_n(x) = f(x)$ in L^2 on I if the sequence of partial sums $s_N(x) = \sum_{n=1}^N f_n(x)$ converges in L^2 to f(x).

Theorem. Suppose that I is a finite interval. Then

(a) Pointwise convergence $\Rightarrow L^{\infty}$, L^1 , or L^2 convergence

(b) L^{∞} convergence \Rightarrow pointwise, L^1 , and L^2 convergence

(c) Pointwise, L^1 , or L^2 convergence $\Rightarrow L^{\infty}$ convergence

(d) L^1 convergence \Rightarrow pointwise, L^2 or L^∞ convergence

(e) L^2 convergence $\Rightarrow L^1$ convergence

(f) L^2 convergence \Rightarrow pointwise or L^{∞} convergence

Suppose that I is an arbitrary interval. Then (a) L^{∞} convergence \Rightarrow pointwise convergence (b) L^{∞} convergence $\Rightarrow L^1$ or L^2 convergence (c) L^2 convergence $\Rightarrow L^1$ convergence