
The Discrete Wavelet Transform.

Motivation.

(a) Given a signal or sequence of data {c0(k)}k∈Z,

Assume that c0(k) is the kth scaling coeffi-

cient for some underlying function f(x); that

is, c0(k) = 〈f, ϕ0,k〉 for each k ∈ Z. Why is this

a reasonable assumption?

(b) The data will only allow us to construct

P0f =
∑

n c0(k)ϕ0,k so we cannot know the

coefficients 〈f, ϕj,k〉 or 〈f, ψj,k〉 for any j > 0.

We can however compute those coefficients for

j < 0.

(c) For any j, k,

ϕj,k =
∑
n

h(n− 2k)ϕj+1,n

and

ψj,k =
∑
n

g(n− 2k)ϕj+1,n.
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(d) Therefore, setting cj(k) = 〈f, ϕ−j,k〉 and

dj(k) = 〈f, ψ−j,k〉, we have

cj+1(k) =
∑
n

cj(n)h(n− 2k),

and

dj+1(k) =
∑
n

cj(n) g(n− 2k).

(e) Finally we note that

cj(k) =
∑
n

cj+1(n)h(k − 2n)

+
∑
n

dj+1(n) g(k − 2n).
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Theorem. Let {Vj} be an MRA with scaling

filter h(k) and wavelet filter g(k). Then

(a)
∑
n

h(n) =
√

2 (⇐⇒ ∫
ϕ(x) dx 6= 0)

(b)
∑
n

g(n) = 0 (⇐⇒ ∫
ψ(x) dx = 0)

(c)
∑

k

h(k)h(k − 2n) =
∑

k

g(k) g(k − 2n) = δ(n)

(⇐⇒ 〈ϕ0,0, ϕ0,n〉 = 〈ψ0,0, ψ0,n〉 = δ(n))

(d)
∑

k

g(k)h(k − 2n) = 0 for all n ∈ Z

(⇐⇒ 〈ϕ0,0, ψ0,n〉 = 0, all n)

(e)
∑

k

h(m− 2k)h(n− 2k)

+
∑

k

g(m− 2k) g(n− 2k) = δ(n−m)

(⇐⇒ Pj+1 = Pj + Qj).
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Some new notation.

Definition. Given a filter h(k), define g(k) =

(−1)k h(1− k). Define the approximation op-

erator H and detail operator G corresponding

to h(k) by

(Hc)(k) =
∑
n

c(n)h(n− 2k),

(Gc)(k) =
∑
n

c(n) g(n− 2k).

Define the approximation adjoint H∗ and detail

adjoint G∗ by

(H∗c)k =
∑
n

c(n)h(k − 2n),

(G∗c)k =
∑
n

c(n) g(k − 2n).
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Theorem. Given h(k), g(k) = (−1)k h(1− k),

(a)
∑

k

h(k)h(k − 2n) =
∑

k

g(k) g(k − 2n) = δ(n)

⇐⇒ HH∗ = GG∗ = I

(b)
∑

k

g(k)h(k − 2n) = 0 ⇐⇒ HG∗ = GH∗ = 0

(c)
∑

k

h(m− 2k)h(n− 2k)

+
∑

k

g(m− 2k) g(n− 2k) = δ(m− n)

⇐⇒ H∗H + G∗G = I.
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A look on the transform side.

Definition. Let c(n) be a signal.

(a) Given m ∈ Z, the shift operator τm is de-

fined by τmc(n) = c(n−m).

(b) The downsampling operator ↓ is defined by

(↓c)(n) = c(2n).

(c) The upsampling operator ↑ is defined by

(↑c)(n) =

{
c(n/2) if n is even,

0 if n is odd.

Lemma. Given a signal c(n),

(a) For every m ∈ Z (τmc)∧(γ) = e−2πimγ ĉ(γ).

(b) (↓c)∧(γ) =
1

2
(ĉ

(
γ

2

)
+ ĉ

(
γ + 1

2

)
).

(c) (↑c)∧(γ) = ĉ(2γ).
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Lemma.

(a) Defining h(n) = h(−n) and g(n) = g(−n)

then

(Hc)(n) =↓(c ∗ h)(n)

and

(Gc)(n) =↓(c ∗ g)(n).

(b) Also

(H∗c)(n) = (↑c) ∗ h(n)

and

(G∗c)(n) = (↑c) ∗ g(n).
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Lemma. Given h(k), g(k) = (−1)k h(1− k),

m0(γ) = 2−1/2 ∑

k

h(k) e−2πikγ,

and

m1(γ) = 2−1/2 ∑

k

h(k) e−2πikγ.

Then for any signal c(n),

(Hc)∧(γ) =
1√
2
(ĉ(γ/2)m0(γ/2)

+ĉ(γ/2 + 1/2)m0(γ/2 + 1/2)),

(Gc)∧(γ) =
1√
2
(ĉ(γ/2)m1(γ/2)

+ĉ(γ/2 + 1/2)m1(γ/2 + 1/2)),

(H∗c)∧(γ) =
√

2ĉ(2γ)m0(γ),

(G∗c)∧(γ) =
√

2ĉ(2γ)m1(γ).
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Lemma. Given h(k), g(k) as usual. Then

m0(γ)m0(γ + 1/2) + m1(γ)m1(γ + 1/2) = 0

which is equivalent to

HG∗ = GH∗ = 0.

Theorem. Given h(k), g(k), m0(γ), m1(γ),

and the operators H, G, H∗, and G∗ as above,

the following are equivalent.

(a) |m0(γ)|2 + |m0(γ + 1/2)|2 ≡ 1.

(b) H∗H + G∗G = I.

(c) HH∗ = GG∗ = I.
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Definition. Given h(k), m0(γ) as before, we
say h(k) is a QMF (quadrature mirror filter) if

(a) m0(0) = 1 and

(b) |m0(γ/2)|2 + |m0(γ/2 + 1/2)|2 ≡ 1.

Theorem. Suppose that h(k) is a QMF. De-
fine g(k) as before. Then:

(a)
∑
n

h(n) =
√

2,

(b)
∑
n

g(n) = 0,

(c)
∑

k

h(k)h(k − 2n) =
∑

k

g(k) g(k − 2n) = δ(n).

(d)
∑

k

g(k)h(k − 2n) = 0 for all n ∈ Z.

(e)
∑

k

h(m− 2k)h(n− 2k)

+
∑

k

g(m− 2k) g(n− 2k) = δ(n−m).
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The Discrete Wavelet Transform (DWT)

(a) For infinite signals: Let h(k) be a QMF,

g(k) the dual filter, and let H, G, H∗, and G∗
be as above. Fix J ∈ N. The DWT of a signal

c0(n), is the collection of sequences

{dj(k): 1 ≤ j ≤ J; k ∈ Z} ∪ {cJ(k): k ∈ Z},
where

cj+1(n) = (Hcj)(n)

dj+1(n) = (Gcj)(n).

The inverse transform is

cj(n) = (H∗cj+1)(n) + (G∗dj+1)(n).

If J = ∞, then the DWT of c0 is the collection

of sequences

{dj(k): j ∈ N; k ∈ Z}.
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For finite, zero-padded signals: Suppose

that c0(n) has length 2N , and that h(n) and

g(n) have length L > 2, with L even. Then

(a) the sequences c1 = Hc0 and d1 = Gc0 each

have length (2N + L− 2)/2,

(b) cj and dj would have length at least 2N−j+

(1− 2−j)(L− 2).

(c) The total length of the DWT for c0 would

be at least

(2N 2−J + (1− 2−J)(L− 2))

+
J∑

j=1

(2N 2−j + (1− 2−j)(L− 2))

= 2N + J(L− 2),

where J ∈ N indicates the depth chosen for the

DWT.
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MATLAB illustration.

>> x=[0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1];
>> dwtmode(’zpd’)

****************************************
** DWT Extension Mode: Zero Padding **
****************************************

>> [h g h1 g1]=wfilters(’db2’);
>> h
h =

-0.1294 0.2241 0.8365 0.4830
>> [c1 d1]=dwt(x,’db2’)
c1 =

-0.1294 0.8966 3.7250 6.5534 9.6407
10.4171 7.5887 4.7603 1.8024

d1 =
-0.4830 -0.0000 -0.0000 -0.0000 0.9659
0.0000 0.0000 0.0000 -0.4830

>> length(x)
ans =

16
>> length([c1 d1])
ans =

18
>> [C L]=wavedec(x,4,’db2’);
>> length(C)
ans =

25
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For periodic signals:

Lemma. Let c(n) have period 2N , h(k) a
QMF, Then (Hc)(n) and (Gc)(n) have period
2N−1, and (H∗c)(n) and (G∗c)(n) have period
2N+1.

MATLAB illustration.
>> dwtmode(’per’)
*****************************************
** DWT Extension Mode: Periodization **
*****************************************
>> [c1 d1]=dwt(x,’db2’)
c1 =

0.4483 2.3108 5.1392 7.9676
10.8654 9.0029 6.1745 3.3461

d1 =
-0.2588 -0.0000 -0.0000 -0.0000
0.2588 0.0000 0.0000 0.0000

>> length(x)
ans =

16
>> length([c1 d1])
ans =

16
>> [C L]=wavedec(x,4,’db2’);
>> length(C)
ans =

16

Notice that all of the numbers are different
for the two different extension modes. Why is
this?
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Scaling functions from scaling filters.

Let ϕ(x) be the scaling function of an MRA.

Then

ϕ̂(γ) = m0(γ/2) ϕ̂(γ/2),

and we may write

ϕ̂(γ) = m0(γ/2) ϕ̂(γ/2)

= m0(γ/2)m0(γ/4) ϕ̂(γ/4)

= · · ·
=

n∏

j=1

m0(γ/2j) ϕ̂(γ/2n).

Letting n →∞, and assuming ϕ̂(0) = 1,

ϕ̂(γ) =
∞∏

j=1

m0(γ/2j).
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How can we use this formula to get a picture

of the scaling function associated with a QMF

filter? There are two ways.

(1) Define

µ̂`(γ) =
∏̀

j=1

m0(γ/2j) 1[−2`−1,2`−1](γ).

Theorem. Let h(k) be a finite QMF, and sup-

pose that there is a number c > 0 such that

|m0(γ)| ≥ c for |γ| ≤ 1/4.

Then:

(a) µ̂` → ϕ̂ in L2(R), and by Plancherel’s for-

mula µ` → ϕ in L2(R).

(b) ‖ϕ̂‖2 = ‖ϕ‖2 = 1.
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(2) This method is called the Cascade Algo-

rithm. The idea here is to define an operator

T by

f(x) 7−→ Tf(x) =
∑
n

h(n) 21/2 f(2x− n).

The scaling function ϕ will be a function that

satisfies the fixed point formula Tϕ = ϕ.

The cascade algorithm sets up an iteration

scheme to find this fixed point, viz., fix some

initial function η0(x) and define for all ` ∈ N,

η`(x) =
∑
n

h(n) 21/2 η`−1(2x− n).

Theorem. Let h(k) be a finite QMF, and sup-

pose that there is a number c > 0 such that

|m0(γ)| ≥ c for |γ| ≤ 1/4.

Then: Let η0(x) = 1[−1/2,1/2](x). Then:

(a) η` → ϕ in L2(R), and

(b) {Tnϕ(x)}n∈Z is an orthonormal system of

translates.
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