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Abstract

Steady, two-dimensional fluid flow and heat transfer are considered near tri-junctions at which solidification is
occurring. Meniscus-defined configurations as well as closed configurations such as directional solidification are
examined. The local wedge geometry admits separable solutions in plane polar coordinates. Over the class of
functions which have bounded temperatures and velocities at the corner, local solutions, those which satisfy all local
boundary conditions, and partial local solutions, those which satisfy all but the normal-stress boundary condition, are
considered. The aim in this work is to describe local fluid flow and heat transfer in problems where solidification is
occurring by identifying singularities in the heat flux and stress which are present at the tri-junction, determining the
dependence of these singularities on the wedge angles, and determining when specific wedge geometries are
selected. It is found that the locally dominant flow is that due to the expansion or contraction of the material upon

solidification.

1. Introduction

Corner flows always are present at the “edges” of
fronts that define phase transformation. For ex-
ample, if a droplet of volatile liquid spreads on a
heated surface, the evaporative mass loss near
the contact line modifies the local dynamics [1].
Contact lines joining multiple-phase / multiple-
field regions occur frequently in crystal growth
systems. Meniscus-defined processes such as
float-zone, and Czochralski systems, as well as
other solidification processes are in this category
(e.g., see Brown [2)]).

* Corresponding author.

! Present address: Department of Applied Mathematics
and Theoretical Physics, University of Cambridge, Silver
Street, Cambridge CB3 9EW, UK.

Two-dimensional isothermal viscous flow in a
corner region has been studied by several au-
thors. Dean and Montagnon [3] considered a
wedge bounded by two rigid planes and deter-
mined properties of the flow as functions of the
wedge angle. Michael [4] considered the same
geometry but with one solid boundary and one

. free surface and found that in order for the free

surface to be stress-free the wedge angle must be
7. Moffatt [5] considered these cases as well as
the case of a wedge bounded by two free surfaces
and described in detail situations in which se-
quences of eddies, now known as Moffatt vor-
tices, can be present in the flow. Proudman and
Asadullah [6] considered a two-fluid system where
the two fluids meet along a flat surface. They
found that the presence of a second phase with
small viscosity resulted in a new mode of flow not
obtained by a single-phase analysis. Anderson
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and Davis [7] considered two-fluid isothermal flow
in a wedge bounded by two rigid planes of arbi-
trary angle. They identified singularities in the
flow, Moffatt vortices, as well as geometries con-
sistent with separable local solutions. They
showed that the two modes identified by Proud-
man and Asadullah [6] are present for all wedge
angles.

Anderson and Davis [8] analyzed non-isother-
mal corner flow in single- and double-wedge ge-
ometries. They identified heat transfer modes
which are the analogs to the flow modes found by
Proudman and Asadullah [6]. They also found
that in order for the free surface to be stress-free,
a non-isothermal planar free surface must leave a
planar rigid boundary at an angle of ar, the same
angle as that found by Michael [4] for a isother-
mal rigid /free wedge.

The goal of the present work is to extend the
isothermal and non-isothermal corner flow re-
sults to cases of systems in which phase transfor-
mation is occurring. In Section 2 solidification is
considered. The aim is to determine those wedge
angles for which solutions exist, and identify the
strengths of singularities in the stresses and heat
fluxes as functions of the wedge angles.

The class of solutions to be considered have
bounded temperatures and velocities at the wedge
vertex. Furthermore, both local solutions, those
which satisfy all local boundary conditions, and
partial local solutions, those which, when free
surfaces are present, satisfy all local boundary
conditions with the exception of the normal-stress
boundary condition, are sought. Partial local solu-
tions are important in the description of the local
flow valid for infinite surface tension (or zero
capillary number). When perturbation methods
for small capillary number are used, conditions
on the flow imposed by the normal-stress bound-

ary condition do not appear in the leading-order
problem and therefore partial local solutions can
be viewed as leading-order solutions for these
cases [7,8]. Partial local solutions also describe
cases in which there exists an appropriate spa-
tially-varying pressure distribution outside the
free surface such that the normal-stress boundary
condition is satisfied without further restriction
on the flow [5]. Under such an assumption, the
restriction of small capillary number is not neces-
sary. When such provisions are made for the
pressure, these solutions satisfy all local boundary
conditions and can be thought of as specialized
local solutions.

2. Non-isothermal flow with solidification

Consider local fluid flow and heat transfer near
contact lines at which solidification is occurring.
The first problem of study is meniscus-defined
solidification systems. The analysis is generic in
that the local wedge geometry is present in many
problems in this category, €.8. Czochralski sys-
tems, float-zone systems, and surface welding sys-
tems [2]. Later, a directional solidification system
will be considered.

In each’ case, there is heat transfer in two
phases but flow in just one. For simplicity ther-
mocapillary effects are neglected. The boundary
conditions for these two systems are outlined in
Table 1. Here “rigid, nonmaterial” indicates that
there is a net mass flux through the surface due
to solidification resulting in nonzero normal and
tangential velocities, “rigid” and “free” indicate
planar rigid and planar free surfaces, respec-
tively, “nf” indicates a no-flux thermal boundary
condition, “melting temp” indicates that the so-
lidification front at # =0 is at the melting tem-

Table 1
Types of boundary conditions for flow with solidification

Hydrodynamic Thermal

0=0 0=a, 0=—a, 6=0 0=a,
Meniscus-defined growth Rigid, nonmaterial Free nf Melting temperature, heat balance nf
Directional solidification Rigid, nonmaterial Rigid nf Melting temperature, heat balance nf
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perature, Ty, and “heat balance” indicates that
the jump in heat flux across the interface is
balanced by the release of latent heat. Note that
the flow has a locally-driven component due to
the phase transformation at the solidification
front.

Meniscus-defined systems: The geometry is
shown in Fig. 1. The solid phase is represented by
the wedge between 6 =0 and 8 = —a; and the
liquid phase is represented by the wedge between
6 =0 and 6 = a,. The boundary between the two
phases, 8 =0, is the solidification front. Each
boundary is assumed to be planar. The radial
distance from the corner is r. In a typical menis-
cus-defined crystal growth system the third region
(or wedge) would represent a gas phase, which
here is taken to be passive. A reference frame is
defined in which the solidification front is sta-
tionary and the solid /gas interface is parallel to
the pulling velocity, ¥ (i.e. the steady-state case).

The energy equations for both the solid and
the liquid contain translational terms due to the
moving reference frame. However, these equa-
tions simplify near the corner region. The govern-
ing equations for the solid and liquid tempera-

0=-0,
A\
solid
gas
0=0
liquid ¢= o,

Fig. 1. Meniscus-defined solidification: a typical tri-junction in
a Czochralski crystal growth system. We use a reference frame
in which the solid/liquid interface is stationary and the
solid /gas interface is parallel to the pulling velocity V. The
growth angle ¢ is shown.

tures, T and T; respectively, and the stream-
function ¢ are

V2Ts =0 in the solid, (2.1a)
V2T, =0 in the liquid, (2.1b)
and

V4 = 0 in the liquid, (2.1c)

when r <min(Z™/(V|, Z/1VI, v/|V],
2 /U0, M /U, v/U), where ZM™ and Z{™
are the thermal diffusivities of the liquid and
solid, respectively, » is the kinematic viscosity,
and U is a velocity scale. The thermal boundary
conditions are

3T

Ty =0on = —a, (2.2a)

Ty=T =Tyon6=0, (2.2b)

psLbar = s onfd=0, (2.2¢)
ky 0 06

T,

0 =0onf#=a,, (2.2d)

where T, is the melting temperature, pg is the
solid density, L, is the latent heat, and k = kg/k;
is the ratio of thermal conductivities (solid to
liquid). Note that v,= —|¥V|sin @; and v, =
|V |cos a, are the normal and tangential compo-
nents of the velocity of the solidification front.
The hydrodynamic boundary conditions are

o
5y = TPtaon 0=0, (2.3a)
19y
739 " Ueon 6=0, (2.3b)
y=00n8=a,, (2.3¢)
aZ
%7 =0onfd=a,, (2.3d)
2u (13 Y

_p+7(75_ arae) =0onf=a,

(2.3¢)

where p =pg/p; is the density ratio (solid to
liquid), p is the pressure, and u is the viscosity.
When |V | =0, there is no solidification, v, = v,
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=0, and the system is locally unforced; this cor-
responds to a single-phase rigid/free wedge
problem (see Moffatt [5] or Anderson and Davis
[7D. The forcing terms in Eq. (2.3) drive a flow
with ¢ ~ . When p = 1 there is no locally gener-
ated flow at the solidification front. When p > 1
fluid is pulled toward the solidification front from
infinity in order to conserve mass. When p <1
the flow is oppositely directed.

The heat balance boundary condition (2.2c)
suggests that the particular solution for the tem-
perature is linear in r. However, the homoge-
neous solution, satisfying

k 9T/36 = 8T, /86, (2.4)

is also possible. The homogeneous solution will
be dominant if it approaches zero slower than r,
the radial dependence of the particular solution,
as r— 0.

Locally, there is no direct coupling between
the thermal and flow problems, so we can deter-
mine the thermal and flow solutions separately.
They are linked through the restrictions that they
each place on the wedge angles.

The particular solution to thermal problem,
which is linear in r and balances terms on the
left-hand-side of Eq. (2.2¢), is given by

TP =Ty + APr sin 6, (2.5a)

pSLvUn

T® =T, + (kA‘S“ -
L

)r sin 6. (2.5b)
This solution requires that a;, =a,=1m/2. The
restrictions on the wedge angles arise because the
no-flux boundary conditions require the isotherms
to be perpendicular to the outer boundaries while
an isothermal solidification front (at melting tem-
perature T),,) must be parallel to these isotherms.
Note, however, that if the solid is locally isother-
mal (AT = 0), there is no restriction on the solid
wedge angle a,. Similarly, if the liquid is locally
isothermal (kA" = pL v, /k, ), there is no restric-
tion on the liquid wedge angle «,.

The homogeneous contributions to the thermal
fields are given by

T =Ty +A™r" sin 16, (2.6a)
T™ = Ty, + A" sin 70, (2.6b)

with the constraints

a;=(p/q)a,, (2.7)
T=qm/2a,, (2.8)

where p and g are any positive, odd integers. It is
important to note here that either the particular
thermal field (with T ~ r™) or homogeneous ther-
mal field (with T ~ r) may be dominant near the
corner (r = 0). Specifically, when 7 <1, the ho-
mogeneous thermal field is dominant. It follows
from Eq. (2.8) that only the case g=1 gives
r < 1. This requires a,> /2. To see that no
larger values of g give 7 <1 note that for g > 5,
r <1 requires that a,>5m/2; such angles are
not physically possible. For ¢ =3, 7 <1 requires
that a, > 37 /2. However, (2.7) requires that a;
=(p/3a,. So a,>pmw/227/2 and a; +a;>
27, which is not physically possible. By a similar
argument one can deduce that 7 <1 only when
a,=a, (le. p=1 and g=1). Therefore, the
homogeneous thermal field is dominant only when
@, = a, > m/2, in which case 7 = im/a, < 1. Note
that when 7 =1 the leading order homogeneous
temperature field is linear in r and therefore can
incorporated into the particular solution (it merely
changes the constant AT).

Next, we consider the flow problem. We as-
sume a streamfunction given by

¢ =r°"[ A, cos(o+1)0 + B, sin(o +1)8
+C, cos(o—1)8 + D, sin(o —1)6]
+r%( A, cos 26 + B, sin 26 + C,0 + D,)
+r(Agy cos 8+ By sin 6 + Cy6 cos 8
+Dgf sin 6), (2.9)

where A,, B, C; and D; for i=0,1, 0 (¢#0, 1)
are unknown constants to be determined by the
boundary conditions. In general, one or more of
these coefficients will be left undetermined by
the local analysis; these are in principle deter-
mined by matching to an outer flow. The expo-
nent ¢, which arises as a separation constant,
may be complex and is taken to have positive real
part. Values of ¢ with Re(a) <0 are not consid-
ered since they lead to unbounded velocities at
the wedge vertex, r = 0. The dominant contribu-
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tion to the flow corresponds to the exponent of r
with the smallest real part.

Both local solutions and partial local solutions
are sought. The local solution satisfying the
boundary conditions (2.3) is given by

¢=r|VI|(psin a, cos 6 + cos a, sin 6),
(2.10)

provided that the condition

p sin a; cos a, +cos a; sin a, =0 (2.11)

is satisfied. (This condition arises as a result of
the requirement that the normal stress vanish on
the free surface «,, and can be thought of as the
analog of the restriction found by Michael [4] for
the rigid/free wedge problem, which requires a
wedge angle of 7 in order for the normal stress
to vanish on the free surface.) Notice that this is
simply a uniform flow feeding the solidification
and corresponds to zero normal and zero tangen-
tial stress on the free surface § = a,. When p =1,
this flow corresponds to a uniform translation at
the pulling speed |V |. Note that when a, =1,
there are no physically allowable values of a,
satisfying condition (2.11). Therefore, one cannot
superpose onto this flow an unforced flow, corre-
sponding to |V| =0, which requires a, =1 in
order to satisfy all local boundary conditions [4].
It is of interest to determine the wedge angles
which satisfy the restrictions placed by the ther-
mal fields as well as by the flow field. In general,
the thermal solution requires that a; = a,, which,
from Eq. (2.11), gives sin 2a, =0 for all values of
p. This suggests that a; =a,=1/2. When the
liquid is locally isothermal, the only condition on
the wedge angles due to the thermal problem is
that «; =7 /2. However, local solutions require
that Eq. (2.11) holds, giving a, = 7 /2. Similarly,
for a locally isothermal solid both «, and a, must
be 7 /2. In each of the above cases, both the
temperature and streamfunction are linear in r.
These local results show that the growth angle

¢ (see Fig. 1), which is defined by
¢=-m+a,+a,,

(2.12)

must be zero. This can be compared with the
results of Surek and Chalmers [9] who used a

float-zone technique to measure ¢. They studied
silicon (p =0.909) and germanium (p = 0.9546)
and found values of ¢ to be 11° and 8°, respec-
tively. The fact that our predicted value is =0
may suggest that the local angle found here is
present on a smaller scale than the angle ob-
served. ‘

Next, partial local solutions are sought. The
same thermal-field results apply as given by Egs.
(2.5)-(2.8). Now, however, the normal-stress con-
dition (2.3¢) on 0 =a, is relaxed. The stream-
function is given by

(ﬁ=¢/7,+er|{p sin @, cos 6 + cos a, sin 6

p sin @, cos a, + cos e, sin a,

a, —Cos a, sin a,
X [0 cos(6 — a,) — cos a, sin 0]}, (2.13)

where ¢, ~r°*1 represents the homogeneous
contribution to the flow corresponding to isother-
mal flow in a rigid /free wedge and is given by
Anderson and Davis [7] by their equations (2.22),
(2.28), (2.29), (2.30), or (2.32), depending on a,,
where the exponent ¢ in the most general case is
given by

o sin 2a, — sin 20a, = 0. (2.14)

This restriction on o is that found by Moffatt [5]
for a rigid /free wedge. It is this isothermal con-
tribution that provides local information from the
far-field flow. Regardless of the value of a, and
regardless of the isothermal contribution to the
flow, the local flow is always dominated by the

Jocally-driven flow due to phase transformation.

To see this, note that the flow due to phase
transformation is represented by velocity compo-
nents that are constant with respect to r and
therefore do not diminish as the corner is ap-
proached. This is in contrast to the isothermal
flows which have velocity components propor-
tional to r” (where Re(o) > 0) which vanish at
the corner.

One must interpret the restrictions placed on
the wedge angles, @, and a,, and exponents, 7
and o. In general, the thermal problem requires
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that @, = a, > w /2. The particular thermal field
(2.5) is dominant when the equality holds and the
homogeneous thermal field (2.6) is dominant oth-
erwise. The value of 7 is given by 7= 37 /a, so
when a; =a,>w/2, the heat flux is singular.
Also note that neither a; nor a, can exceed .
When the liquid (solid) is locally isothermal, a,
(a,) is left undetermined by both the thermal and
flow problem. In all of the above cases, Eq. (2.14)
determines the value of o for the flow field given
an angle in the liquid «,; it does not involve the
angle «, in the solid. While the value of o is
given by Eq. (2.14), the stress field now has an
r~1 singularity due to the term in the streamfunc-
tion proportional to r6 cos(d —a,). This is the
dominant singularity.

Directional solidification system: The geome-
try for this system is shown in Fig. 2. The bound-
aries # =a, and 8 =, — 7 are rigid surfaces
and @ =0 represents the solid/liquid interface.
The container, or ampoule, is pulled upwards
with velocity V. A reference frame is used in
which the solid / liquid interface is stationary.

The problem formulation remains the same as

O0=0-m
N\
solid S
0=0 N ' v

\\
N

N

N

liquid §

N

N\

N

0=0,

Fig. 2. Directional solidification: the tri-junction in a typical
directional solidification system. The container walls are rep-
resented by the solid boundaries § =a, and 8 =a, ~ 7 and
the solid/liquid interface is represented by the boundary
8 =0. We use a reference frame in which the solid/liquid
interface is stationary.

for the meniscus-defined systems with the excep-
tion of the hydrodynamic boundary conditions.
For the directional solidification system these are

i

5, = Ptaon 0=0, (2.15a)
18y .

T eom 0=0, (2.15b)
¢y=00n0=a,, (2.15¢)
1 0y

755=—|V!0n0=a2. (215d)
Here v,= —|V|sin @, and v,= — |V |cos a,.

These correspond to conditions on the normal
and tangential velocity components at the solidifi-
cation front (@ = 0) and to no penetration and no
slip at the sidewall (8 = a,). Notice that there is
no free surface upon which thermocapillarity can
act.

The thermal problem is the same as in the
meniscus-defined systems. However, since the
present geometry has a total wedge angle, a; + a,
of , the results are limited to the case a; = a, =
/2. This includes cases where either the solid
wedge or liquid wedge is locally isothermal.
Therefore, the leading-order thermal fields are
given by Eq. (2.5) and are nonsingular. As in the
meniscus-defined case, the inhomogeneous
boundary terms must be balanced by the terms
linear in r. In this case the streamfunction is
given by

+1
2D,ro"]

v- (o +1)sin 0'77'/2g(0’ o)
(1-p)
+r[V|{p cos 9 + (7/2)2_ N

o
X [0 sin 8 + 5(0 cos 8 — sin 0)]}, (2.16)

where g(8, o) is given by

g(6,0) .
—————— =0s 8 sin ob
sin o /2

sin o(mw/2—8)

i 2.
r—— o sin 8, (2.17)
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liquid

Fig. 3. Directional solidification: sketches of two possible flow
fields for the directional solidification system. The parameters
used hereare V=1,p=1, a;=a, =w /2, and D, =1 (upper
figure), —1 (lower figure). Here the first two dominant terms
in the streamfunction have been considered. We see that the
flow away from the corner depends on the far-field flow but
that sufficiently near the corner the flow is entirely driven by
the phase-change process as shown in the inset.

and o by
otsinow/2=0. (2.18)

This restriction on o is that found by Dean and
Montagnon [3] for a rigid/rigid wedge of angle
/2. Note that the largest contribution locally is
due to the term linear in r. The contribution
from the far-field flow only becomes important
away from the corner. Typical flows showing the
contribution from the first two dominant terms in
the streamfunction are sketched in Fig. 3. The
two sketched flows shown in this figure corre-
spond to [V |=1, p=1, a,=7/2, and D, =1
(upper figure) and —1 (lower figure). While the
far-field flow has a significant effect on the flow a
finite distance from the corner, the flow suffi-
ciently near the corner is always dominated by
that associated directly with the solidification
process (see inset). Recall that there is a r~1
singularity in the stress due to the presence of the
terms 6 sin 8 and 6 cos 8, which vanishes only
when p=1.

3. Summary

We have presented a local picture of fluid flow
and heat transfer near tri-junctions at which so-
lidification is occurring. The class of solutions
sought are those with bounded temperatures and
velocities at the wedge vertex.- Locally, the gov-
erning equations simplify to Laplace’s equation
and the biharmonic equation for the temperature
and streamfunction, respectively. Separable solu-
tions for the temperature and streamfunction are
written as T~ r"f,(0) and ¢ ~ r°*'f,(8), respec-
tively. For the streamfunction, one distinguishes
between local solutions, those which satisfy all
local boundary conditions, and partial local solu-
tions, those which satisfy all local boundary con-
ditions except for the normal-stress boundary
condition. The analysis provides locally valid so-
lutions that identify the types of singularities pre-
sent at the corner and shows how these singulari-
ties vary with the wedge angles.

Two different systems are considered: menis-
cus-defined solidification systems and directional
solidification systems. The analysis is generic in
that many different solidification configurations
have the same type of local tri-junction region.

In the meniscus-defined solidification system it
is found that for local solutions the resulting flow
is just a uniform flow towards the solidification
front and has both the solid and liquid wedge
angles, a; and a,, respectively, equal to /2.
This gives a growth angle, ¢, of zero. This flow is
nonsingylar. Since the unforced version of the
flow problem, the rigid /free wedge problem stud-
ied by Michael [4], requires a liquid wedge angle
of 7, no unforced flow solution can be super-

.posed. For local solutions, the dominant temper-

ature exponent is 7 =1 (i.e. T ~ r); therefore the
heat flux is never singular. For partial local solu-
tions the streamfunction has a locally-driven com-
ponent due to the solidification but now, due to
the relaxation of the normal-stress boundary con-
dition, an unforced flow solution can be super-
posed. However, the locally dominant flow is still
that driven by the solidification. The temperature
and velocity exponents, 7 and ¢, are functions of
the wedge angles; there is no dependence on the
density ratio. The stress field always has an r~!
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singularity. The heat flux is singular only when
both solid and liquid wedge angles are equal and
greater than /2.

In the directional solidification system the
dominant flow is again the component driven by
the phase transformation. The solidification front
is found to be locally perpendicular to the side-
walls. The heat flux is always nonsingular.
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