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a b s t r a c t

We examine homogenization methods applied to sharp-interface and diffuse-interface models for
gravity-driven flow in heterogeneous porous media. Our work specifically examines a matrix of models
that includes (1) a variable media, diffuse-interface model, (2) a variable media, sharp-interface model,
(3) a homogenized media, diffuse-interface model and (4) a homogenized media, sharp-interface model.
We connect all four of these models via homogenization theory and sharp-interface limits. We show that
existing results based on homogenization methods applied to sharp-interface models can be recovered
by a less direct butmore rigorous approach involvingwell-established homogenization theory and sharp-
interface limits.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Recent work byMiller and coworkers [1–3] has explored techniques for containing and/ormobilizing dense non-aqueous phase liquids
(DNAPLs) in contaminated subsurface systems through the introduction of brine solutions. The success of such techniques relies on the
accurate prediction of the location of the brine during the remediation stages as well as eventual brine recovery. The sequestration
of carbon dioxide (CO2) in deep geological reservoirs in order to combat large scale emissions of CO2 into the atmosphere is another
application in which the understanding of gravity-driven flows in complex porous media is of central importance. Here, for example,
recent work has been directed towards the development of modeling and analysis tools that allow the prediction of time scales associated
with the spread of subsurface CO2 plumes and the reservoir storage efficiency (e.g. [4–6]).
For applications involving contaminated soil and other complex subsurface systems, in general it is necessary to examine and develop

models that address heterogeneous media. Homogenization theory can be used in such contexts to extract from the full models, reduced
models that, in an average sense, still account for the heterogeneities. The development of homogenization techniques that can be applied
to situations that involve moving free boundaries, such as those occurring during remediation of contaminated soils using brine solutions
and during the geological sequestration of CO2, is therefore of considerable importance.
One important classification of models for free boundary problems relates to how one mathematically characterizes a boundary

between two phases. Sharp-interfacemodels introduce amathematical dividing surface, whose thickness is zero, that separates one phase
from another. Governing equations, such as conservation of mass and conservation of linear momentum, are given for each phase and
conditions at the interface couple quantities in the bulk phases to dynamics of the interface. Diffuse-interface models, on the other hand,
have an interfacial region that is defined implicitly in terms of level sets of field variables. For example, in a miscible system such as water
and brine the speciesmass fraction varies continuously from some value in the bulk brine region to another value in the bulk water region.
A diffuse interfacial region can be defined implicitly as the region between two level sets of species mass fraction. The actual thickness of
such an interfacial region will depend on the specific choice of level sets, however, the physics of diffusion between the two phases sets
the length scale in general. In the diffuse-interface model, a single set of governing equations applies over the whole domain, including
the interfacial region.
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In the presentwork,we examine both sharp-interface and diffuse-interfacemodels of gravity currentmotion in a heterogeneous porous
medium. Our interest lies particularly in the homogenization of such models with respect to porous medium properties and in how the
sharp-interface models can be recovered from the diffuse-interface models in the appropriate limits. Our previous work (Anderson et al.
[7], hereafter denoted by AMM) on a related sharp-interfacemodel describes the basic setting andmotivation for our present investigation
and so we outline those results below.
AMM examined homogenization of a gravity current that slumps in a heterogeneous porous medium along an impermeable boundary

z = 0. They considered a single fluid model in which the free surface was defined as a sharp interface. They assumed that the background
permeability of the porous medium was a given, rapidly varying function of space and pursued a homogenization theory for general
two-dimensional geometries along with supporting computations valid in a slender gravity current limit for this nonlinear free boundary
problem. While the asymptotic averaging of the bulk regions, where a linear elliptic equation applies, is relatively straightforward (e.g.
[8]), the presence of a moving free boundary introduces nonlinearities as well as other complexities not addressed by the classical
homogenization techniques. With an interface present, the model considered by AMM comprised a linear, variable coefficient elliptic
equation in the bulk regions coupled to a kinematic (transport) equation evaluated at amoving interface.While there has been considerable
effort in applying homogenization techniques to transport equations in bulk regions (e.g. E [9]), the transport equation of interest here is
applied at a fluid interface within the region to be homogenized and has coefficients that are nonlocally coupled to the elliptic solve
required to compute the flow. Bulk homogenization techniques rely on averaging quantities defined over volumes (or areas in two-
dimensional applications) while the interfacial kinematic condition in a sharp-interface model applies on a surface (or curve in two-
dimensional problems). The question then is how does one adapt homogenization techniques based on bulk averaging to handle the
presence of a lower-dimensional dividing surface representing the interface between two fluid regions. As we describe in more detail
below, AMM proposed an ad hoc ‘pre-averaging’ approach addressing this question; in the present work, we put this ad hoc approach on
a more solid foundation through a rigorous derivation involving a diffuse-interface model.
The focus of the work in AMM was to address the complexities arising with homogenization and free boundaries. AMM addressed

leading-order homogenization results in non-slender geometries for cases where the permeability function varied periodically in either
one or two spatial directions. That is, they considered permeability functions of the form K = K(X), K = K(Z) or K = K(X, Z) where
X = x/ε and Z = z/ε are spatial variables associated with the rapid variation of the permeability in the limit when ε, a measure of the
spatial variation of the permeability, is small. The focus was on configurations in which the free surface could be expressed as a single-
valued function of space and time z = h(x, t). Additionally, for the slender limit, in which the hydrostatic pressure approximation could
be applied, and the case K = K(X) they found both leading-order homogenization results as well as first-order corrections and compared
these with numerical simulations of an evolution equation for the interface position h.
A central issue in the homogenization work of AMM involved the homogenization of the kinematic boundary condition [e.g. in the

present work see (3)] governing the dynamics of the interface position z = h(x, t). Two basic scenarios with respect to this equation arose
corresponding to (I) permeability functions varying only in the horizontal direction [K = K(X)] and (II) permeability functions that have
variation in the vertical direction [K = K(Z) or K = K(X, Z)].
(I): When the background permeability varied only in the horizontal direction [i.e. K = K(X)] the quantities such as the horizontal and

vertical velocity components (evaluated at the interface) appearing in Eq. (3) in general depend on x, t and, as in standard homogenization
theory, also the fast space variable X . When onemust decide how to homogenize this equation an approach that is similar to a classical one
in a bulk region may be developed. This becomes more apparent in the slender geometry case in which Eq. (3) can be analytically reduced
to a partial differential equation for h(x, X, t). AMM examined this slender geometry situation in considerable detail and showed that
leading-order homogenized solutions as well as first corrections to these solutions could be obtained. They found that the solution of the
leading-order homogenized equations compared well with the numerical solution of the slender, variable media, problem; the difference
between these two solutions was shown to scale linearly with ε. AMM also found that corrections to this leading-order homogenized
solution agreed well with numerical simulations of the slender limit equations in the central portion of the gravity current away from the
leading edge (or contact line); the difference between the corrected solution and the full numerical solution scaled with ε2 in the interior
region but scaled only linearly with ε near the leading edge. We comment that in this particular setting the contact line is itself a free
boundary for the interface PDE and another level of homogenization at free boundaries must be addressed (a modified procedure that
takes special care of the contact line regions in order to identify uniformly valid corrections is currently under investigation).
(II): In cases in which the background permeability field varies rapidly in both x and z directions AMM showed that a procedure

involving an ad hoc ‘pre-averaging’ of the free surface condition (3) with respect to the vertical coordinate z, followed by a more standard
homogenization procedure in the horizontal x direction, led to a closed set of homogenized equations (we outline this procedure in more
detail below). Plausible arguments for this ad hoc procedure were given in AMM and indeed later numerical calculations[10] provided
agreement between the leading-order homogenization results based on this averaging procedure and numerical simulations in the slender
geometry limit for a doubly periodic background permeability.
Despite the apparent success of this ‘pre-averaging’ procedure adopted by AMM to allow for the homogenization of a free surface in

a heterogeneous media, formal justification for its use is still lacking. That is, while the ‘pre-averaging’ procedure does yield a scaled-up
systemwhich is in mass conservative form, it is not mathematically clear how this is guaranteed in the averaging procedure. The purpose
of the present work is to add improved mathematical and physical understanding of how this structure is preserved. In the present work,
we examine an alternative,more rigorous, approach to the homogenization problem thatwe show leads to the same result as that obtained
via the ad hoc pre-averaging. In particular, we shall examine a diffuse-interface model of a two-fluid gravity current problem where an
interfacial region, characterized by continuously varying species and density fields and with thickness related to the scale of diffusion,
replaces a mathematically sharp interface. In this context, a classical homogenization procedure can be applied without the complicating
presence of a sharp interface. Then, once the leading-order homogenized system is obtained, we shall examine it in a sharp-interface
limit (in the limit of vanishing solute diffusivity) to recover a homogenized, sharp-interface model directly from the homogenized diffuse-
interface model. We shall demonstrate that this approach not only provides a homogenized diffuse-interface model but also provides
independent justification of the homogenized, sharp-interface model obtained by AMM using the pre-averaging step.
Our work on the homogenization of these models is summarized schematically in Fig. 1. The sharp-interface two-fluid model is

identified as Model 2. We interpret this model as one describing the dynamics of two immiscible fluids with diffusion coefficient D = 0.
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Fig. 1. Four descriptions for gravity current flow in porous media with rapidly varying medium properties. The left-side boxes (1 and 3) represent models with species
diffusion and diffuse interfaces. The right-side boxes (2 and 4) represent sharp-interface models (e.g. AMM). Models 3 and 4 are obtained via homogenization from the
variable media models 1 and 2, respectively. Models 2 and 4 are obtained via sharp-interface analysis of the diffuse-interface models 1 and 3, respectively.

As we outline in detail below, a homogenization procedure – using a pre-averaging step – represented by the limit ε → 0 leads to a set of
leading-order homogenized equations identified as Model 4. Since the derivation of Model 4 via Model 2, represented by the open arrow,
relies on an ad hoc pre-averaging step, we wish to justify Model 4 by deriving it from an alternate method. In particular, starting with a
variable media, diffuse-interface problem identified as Model 1, we first apply a homogenization procedure taking ε → 0, which leads to
the homogenized, diffuse-interface problem identified as Model 3. Since Model 1 and Model 3 do not involve explicit representation of an
interfacial boundary, only standard homogenization theory is required. Then, we examineModel 3 in a sharp-interface limit characterized
by D → 0 in order to obtain Model 4. The derivation of Model 4 from Model 1 via Model 3, as indicated by solid arrows, thus relies on
first homogenizing the diffuse-interface model via standard methods (ε → 0) and then examining a sharp-interface limit (D→ 0). This
route to Model 4 does not involve pre-averaging a sharp-interface boundary condition. Additionally, we shall demonstrate that our sharp-
interface analysis, which provides a connection between Model 3 and Model 4 also provides a similar connection between Model 1 and
Model 2, closing the loop. Therefore, the passage from Model 1 to Model 4 via Model 2 can be interpreted as the limit D→ 0 followed by
the limit ε → 0. The passage from Model 1 to Model 4 via Model 3 can be interpreted as the limit ε → 0 followed by the limit D→ 0.
The underlying assumptions built into the two routes fromModel 1 to Model 4 are worth emphasis. The route via Model 3 describes a

scenario in which the length scale of the permeability variations is assumed to be much smaller than the interface thickness (i.e. ε → 0
first, then D→ 0). On the other hand, the route via Model 2 describes a scenario in which the permeability variations are, by the nature
of the sharp-interface model in which they are represented, much larger than the interface thickness (i.e. D→ 0 first, then ε → 0). The
connection of these approaches to the homogenized, sharp-interface limit of Model 4 by these distinctly different routes is demonstrated
in the present work.
The paper is organized as follows. In Section 2 we outline the sharp-interface two-fluid model and its homogenization based on the

procedure implemented by AMM. This section extends the basic model of AMM, who addressed a one-fluid model, in order to allow
a direct comparison between sharp-interface and diffuse-interface models. In Section 3 we describe a diffuse-interface model and its
homogenization. In Section 4 we give a one-dimensional solution of the diffuse-interface model that reveals the structure of the solutions
through the interfacial region. In Section 5 we examine the sharp-interface limit of the homogenized diffuse-interface model and show
that it recovers the homogenizedmodel from Section 2. Herewe also point out that the sharp-interface limit connects the diffuse-interface
model and sharp-interface model in the variable media setting as well. Conclusions are given in Section 6.

2. Sharp-interface, two-fluid model

We describe here the governing equations for two immiscible fluids in a spatially heterogeneous porous medium. The two fluid
regions are coupled through interfacial boundary conditions applied at a ‘sharp’ interface (i.e. an interface with zero thickness). This
description follows to some degree a second paper of Anderson et al. [10] in which they examined a two-fluid model but only for the
case of uniform permeability. Here we outline the details of the two-fluid model and the homogenization approach of AMM for a spatially
varying background permeability.
In fluid j (j = 1, 2), the governing equations are

∇ · uj = 0, (1)

uj = −K(x/ε, z/ε)
[
∇pj + ρ jgk̂

]
= −Kc(x/ε, z/ε)

[
∇φj +1ρ jk̂

]
, (2)

where uj is the velocity vector, here taken to be two-dimensional with horizontal and vertical components uj and wj, respectively, pj is
the pressure in fluid j, K = k/µ, where k is the permeability and µ is the viscosity (here assumed to be the same for both fluids), ρ j is
the (assumed constant) density in fluid j, g is gravitational acceleration and k̂ is a unit vector in the vertical direction. We have defined
1ρ j = ρ j/ρ∗ − 1 where ρ∗ is a reference density, φj = pj/(ρ∗g)+ z and Kc = kρ∗g/µ. The parameter ε, which is assumed to be small,
measures the rapid spatial variation of the permeability.
The above equations are subject to a kinematic condition at the moving interface

∂h
∂t
= −u1

∂h
∂x
+ w1 = −u2

∂h
∂x
+ w2 at z = h(x, t), (3)

and continuity of pressure p1 = p2 (or equivalently φ1 = φ2) at z = h(x, t). While additional boundary and initial conditions would apply
for a specific gravity current configuration [7,10], these will not fundamentally change the ideas applied in the present case and so we
omit them here for simplicity.
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We homogenize the above two-fluid model using a procedure analogous to that of AMM. We introduce fast spatial variables X = x/ε
and Z = z/ε and treat x, X , z and Z as independent variables. We assume expansions for φj, uj,wj and h of the form

φj = φ
j
0(x, z, X, Z, t)+ εφ

j
1(x, z, X, Z, t)+ · · · , (4)

uj = uj0(x, z, X, Z, t)+ εu
j
1(x, z, X, Z, t)+ · · · , (5)

wj = w
j
0(x, z, X, Z, t)+ εw

j
1(x, z, X, Z, t)+ · · · , (6)

h = h0(x, X, t)+ εh1(x, X, t)+ · · · . (7)

Following standard asymptotic homogenization methods (e.g. [8]) in which multiple space scales are introduced we write

∂

∂x
→

∂

∂x
+
1
ε

∂

∂X
,

∂

∂z
→

∂

∂z
+
1
ε

∂

∂Z
. (8)

An equation for φj can be obtained by combining Eqs. (1) and (2). With the above transformations we have(
∂

∂x
+
1
ε

∂

∂X

)[
Kc(X, Z)

(
∂φj

∂x
+
1
ε

∂φj

∂X

)]
+

(
∂

∂z
+
1
ε

∂

∂Z

)[
Kc(X, Z)

(
∂φj

∂z
+1ρ j +

1
ε

∂φj

∂Z

)]
= 0. (9)

At O(ε−2)we findLφ
j
0 = 0 whereL is a linear operator defined by

L ≡
∂

∂X

(
Kc
∂

∂X

)
+
∂

∂Z

(
Kc
∂

∂Z

)
. (10)

This is solved by taking φj0 = φ
j
0(x, z, t) independent of the fast scales X and Z .

At O(ε−1)we find that

∂

∂X

[
Kc

(
∂φ
j
0

∂x
+
∂φ
j
1

∂X

)]
+
∂

∂Z

[
Kc

(
∂φ
j
0

∂z
+1ρ j +

∂φ
j
1

∂Z

)]
= 0, (11)

or in terms ofL

Lφ
j
1 = −

∂Kc
∂X

∂φ
j
0

∂x
−
∂Kc
∂Z

(
∂φ
j
0

∂z
+1ρ j

)
. (12)

The solution to Eq. (12) can be expressed as

φ
j
1 = θ1(X, Z)

∂φ
j
0

∂x
+ θ2(X, Z)

(
∂φ
j
0

∂z
+1ρ j

)
, (13)

where the coefficients θ1 and θ2 satisfy the two cell problems [11] on [0, 1] and [0, 1]

Lθ1 = −
∂Kc
∂X

, Lθ2 = −
∂Kc
∂Z
. (14)

At O(1)we find, upon integrating the governing equations in X and Z , that φj0 satisfies the general elliptic problem

∇ ·

(
Keff · ∇φ

j
0

)
= α

∂2φ
j
0

∂x2
+ 2β

∂2φ
j
0

∂x∂z
+ γ

∂2φ
j
0

∂z2
= 0, (15)

where

Keff =
[
α β
β γ

]
, (16)

and the coefficients are given by

α = 〈〈Kc〉〉 − 〈〈Kc |∇θ1|2〉〉, (17)
β = −〈〈Kc∇θ1 · ∇θ2〉〉, (18)

γ = 〈〈Kc〉〉 − 〈〈Kc |∇θ2|2〉〉, (19)

where 〈〈 · 〉〉 =
∫ 1
0

∫ 1
0 · dXdZ .

We now address the boundary condition (3). We follow here the ad hoc ‘pre-averaging’ of this boundary condition as outlined in AMM.
That is, we formally ‘pre-average’ equation (3) to obtain

∂h
∂t
= −〈u1〉Z

∂h
∂x
+ 〈w1〉Z = −〈u2〉Z

∂h
∂x
+ 〈w2〉Z at z = h(x, X, t), (20)

where 〈·〉Z denotes an average in Z so that these quantities depend only on the variables x, X and t . As outlined in the introduction, our
objective is now to justify the use of this pre-averaging by showing that it agrees with results obtained by taking the sharp-interface limit
of a homogenized diffuse-interface model.
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We insert the expansion for h into Eq. (20) and collect powers of ε. At O(ε−1) the boundary conditions are satisfied by taking
h0 = h0(x, t). At O(1) the boundary conditions can be written

∂h0
∂t
= −〈u10〉Z

(
∂h0
∂x
+
∂h1
∂X

)
+ 〈w10〉Z = −〈u

2
0〉Z

(
∂h0
∂x
+
∂h1
∂X

)
+ 〈w20〉Z . (21)

Averaging this in X gives

∂h0
∂t
= −〈〈u10〉Z 〉X

∂h0
∂x
+

〈〈
Kc

(
∂φ10

∂x
+
∂φ11

∂X

)〉
Z

∂h1
∂X

〉
X
+ 〈〈w10〉Z 〉X

= −〈〈u20〉Z 〉X
∂h0
∂x
+

〈〈
Kc

(
∂φ20

∂x
+
∂φ21

∂X

)〉
Z

∂h1
∂X

〉
X
+ 〈〈w20〉Z 〉X . (22)

From the equations in the bulk we know that the leading-order velocity components are

uj0(x, z, X, Z) = −Kc(X, Z)

(
∂φ
j
0

∂x
+
∂φ
j
1

∂X

)
, (23)

w
j
0(x, z, X, Z) = −Kc(X, Z)

(
∂φ
j
0

∂z
+1ρ j +

∂φ
j
1

∂Z

)
, (24)

for j = 1, 2. We can integrate by parts and use Eq. (11) to show that, as in AMM, the following term vanishes,〈〈
Kc

(
∂φ
j
0

∂x
+
∂φ
j
1

∂X

)〉
Z

∂h1
∂X

〉
X

= −

〈
h1
∂

∂X

〈
Kc

(
∂φ
j
0

∂x
+
∂φ
j
1

∂X

)〉
Z

〉
X

,

= −

〈
h1

〈
∂

∂X

[
Kc

(
∂φ
j
0

∂x
+
∂φ
j
1

∂X

)]〉
Z

〉
X

,

=

〈
h1

〈
∂

∂Z

[
Kc

(
∂φ
j
0

∂z
+1ρ j +

∂φ
j
1

∂Z

)]〉
Z

〉
X

,

=

〈
h1

[
Kc

(
∂φ
j
0

∂z
+1ρ j +

∂φ
j
1

∂Z

)]Z=1
Z=0

〉
X

= 0. (25)

The full set of averaged leading-order equations are

∇ · 〈〈uj0〉〉 = 0, (26)

〈〈uj0〉〉 = −Keff ·
(
∇φ

j
0 +1ρ

jk̂
)
, (27)

for j = 1, 2, subject to the free surface boundary conditions

∂h0
∂t
= −〈〈u10〉〉

∂h0
∂x
+ 〈〈w10〉〉 = −〈〈u

2
0〉〉
∂h0
∂x
+ 〈〈w20〉〉 at z = h0(x, t), (28)

φ0 |
+

−
= 0, at z = h0(x, t). (29)

Note that the free surface condition can also be expressed more generally as u10 · n̂ = u20 · n̂ = vI · n̂, where n̂ is a unit normal vector to
the interface.
These results will now be compared with results obtained from an alternative gravity current model in which the sharp interface is

replaced by continuously varying species and density fields. More specifically, we shall show that this same homogenized sharp-interface
model can be derived by first homogenizing a diffuse-interface model and then taking its sharp-interface limit.

3. Gravity current with species diffusion

A model for the flow of a (miscible) brine solution in porous media is made up of a mass balance condition, a Darcy equation for the
fluid flow and a diffusion equation for the species. In particular,

∂(χρ)

∂t
+∇ · (χρu) = 0, (30)

∂(χρs)
∂t

+∇ · (χρsu) = ∇ · (χρD · ∇s) , (31)

u = −K ·
(
∇p+ ρgk̂

)
, (32)
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where we take as an equation of state

ρ = ρ∗f (s). (33)

Hereχ is the porosity, which for simplicitywe take to be constant, ρ is the fluid density, u is the fluid velocity, s is the speciesmass fraction,
D is a dispersion tensor which accounts for both Fickian diffusion and mechanical dispersion, which we take to be constant (in general D
is a symmetric tensor and a function of u), K is a tensor which for our purposes here we assume to have the form K I, where K = k/µ is a
scalar function, k is the permeability andµ is the viscosity. We assume that K is a prescribed function of space. In the equation of state ρ∗
is a reference density and f (s) is a dimensionless function to be specified. For dense brine solutions, the viscosity can be a strong function
of species mass fraction [12], although for simplicity we take it to be constant.
With χ constant, the scalar permeability function and the field variable φ = p/(ρ∗g)+ z these equations can be reduced to

∂ρ

∂t
+∇ · (ρu) = 0, (34)

∂(ρs)
∂t
+∇ · (ρsu) = ∇ · (ρD · ∇s) , (35)

u = −Kc
[
∇φ + (f (s)− 1)k̂

]
, (36)

where Kc = kρ∗g/µ.
We now assume that Kc = Kc(X, Z) where X = x/ε and Z = z/ε with ε a small parameter and seek a solution as expansions of the

form

φ = φ0(x, z, X, Z, t)+ εφ1(x, z, X, Z, t)+ · · · , (37)

etc. The homogenization procedure uses a multiple scale analysis in which the derivatives transform as before in Eq. (8). The equations in
expanded form are

∂ρ

∂t
=

(
∂

∂x
+
1
ε

∂

∂X

)[
ρKc(X, Z)

(
∂φ

∂x
+
1
ε

∂φ

∂X

)]
+

(
∂

∂z
+
1
ε

∂

∂Z

)[
ρKc(X, Z)

(
∂φ

∂z
+
1
ε

∂φ

∂Z
+ f (s)− 1

)]
(38)

∂(ρs)
∂t

=

(
∂

∂x
+
1
ε

∂

∂X

)[
ρsKc

(
∂φ

∂x
+
1
ε

∂φ

∂X

)]
+

(
∂

∂z
+
1
ε

∂

∂Z

)[
ρsKc

(
∂φ

∂z
+
1
ε

∂φ

∂Z
+ f (s)− 1

)]
+

(
∂

∂x
+
1
ε

∂

∂X

){
ρ

[
D11

(
∂s
∂x
+
1
ε

∂s
∂X

)
+ D12

(
∂s
∂z
+
1
ε

∂s
∂Z

)]}
,

+

(
∂

∂z
+
1
ε

∂

∂Z

){
ρ

[
D21

(
∂s
∂x
+
1
ε

∂s
∂X

)
+ D22

(
∂s
∂z
+
1
ε

∂s
∂Z

)]}
. (39)

At O(ε−2)we find

0 =
∂

∂X

(
ρ0Kc

∂φ0

∂X

)
+
∂

∂Z

(
ρ0Kc

∂φ0

∂Z

)
, (40)

0 =
∂

∂X

(
ρ0s0Kc

∂φ0

∂X

)
+
∂

∂Z

(
ρ0s0Kc

∂φ0

∂Z

)
+

∂

∂X

[
ρ0

(
D11

∂s0
∂X
+ D12

∂s0
∂Z

)]
+
∂

∂Z

[
ρ0

(
D21

∂s0
∂X
+ D22

∂s0
∂Z

)]
. (41)

These are solved by functions φ0 = φ0(x, z, t), s0 = s0(x, z, t) (and hence ρ0 = ρ0(x, z, t)) that are independent of the fast scales X and
Z . These forms lead us to define a second operatorLD, analogous toL in Eq. (10), by

LD ≡
∂

∂X

(
D11

∂

∂X
+ D12

∂

∂Z

)
+
∂

∂Z

(
D21

∂

∂X
+ D22

∂

∂Z

)
. (42)

At O(ε−1)we find that

ρ0Lφ1 = −ρ0

[
∂φ0

∂x
∂Kc
∂X
+

(
∂φ0

∂z
+ f (s0)− 1

)
∂Kc
∂Z

]
, (43)

ρ0s0Lφ1 + ρ0LDs1 = −ρ0s0

[
∂φ0

∂x
∂Kc
∂X
+

(
∂φ0

∂z
+ f (s0)− 1

)
∂Kc
∂Z

]
. (44)

The second of these reduces simply toLDs1 = 0 upon using the first equation. These equations are solved by taking s1 = s1(x, z, t) and

φ1 = θ1(X, Z)
∂φ0

∂x
+ θ2(X, Z)

(
∂φ0

∂z
+ f (s0)− 1

)
, (45)

where the coefficients θ1 and θ2 satisfy the two cell problems (14) identified in the previous section.
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At O(1)we can write down the equations, average them in X and Z , and use〈〈
Kc
∂θ1

∂X

〉〉
= −〈〈Kc |∇θ1|2〉〉, (46)〈〈

Kc
∂θ1

∂Z

〉〉
=

〈〈
Kc
∂θ2

∂X

〉〉
= −〈〈Kc∇θ1 · ∇θ2〉〉, (47)〈〈

Kc
∂θ2

∂Z

〉〉
= −〈〈Kc |∇θ2|2〉〉, (48)

where 〈〈 · 〉〉 =
∫ 1
0

∫ 1
0 · dXdZ to find that the leading-order homogenized equations are

∂ρ0

∂t
+∇ · (ρ0u0) = 0, (49)

∂(ρ0s0)
∂t

+∇ · (ρ0s0u0) = ∇ · (ρ0D · ∇s0) , (50)

u0 = −Keff ·
[
∇φ0 + (f (s0)− 1)k̂

]
, (51)

where Keff is given in Eqs. (16)–(19).
We note here that the above homogenization procedure has been applied to a system in which the interfacial region between the two

phases is defined implicitly, rather than explicitly as in the sharp-interface formulation of AMM. With the leading-order homogenized
equations thus obtained, we shall investigate a sharp-interface limit of these equations in order to derive an associated sharp-interface
model that can be compared directly to the leading-order homogenized results of AMM.

4. One-dimensional solution of diffusion-based model

The sharp-interface limit to be performed in the next section on the homogenized model above requires a clear understanding of the
structure through and thickness of the interfacial region. For a classical diffusion equation it is well known that such a diffusive region
has a thickness that scales with

√
Dt . The present context includes species diffusion coupled to a variable nonlinear density field and

fluid flow. The general context is one in which we examine the limit ε → 0 (homogenization) before the limit of vanishing diffusivity
D→ 0. In other words, the case under consideration has permeability variations (measured by ε) on a much smaller scale than that of the
interfacial thickness (measured by D). The calculations below highlight the hydrodynamic effects of diffusion in the interfacial region and
demonstrate that the interfacial thickness scaling

√
Dt still holds.

Consider for simplicity the case with K = K I and D = DIwhere

∂ρ

∂t
+
∂ (ρw)

∂z
= 0, (52)

∂(ρs)
∂t
+
∂ (ρsw)
∂z

= D
∂

∂z

(
ρ
∂s
∂z

)
, (53)

w = −K
(
∂p
∂z
+ ρg

)
, (54)

where ρ = ρ∗f (s). We shall consider the case in which the mass fraction s attains constant values s+ and s− in the far-field (z → ±∞)
and where the fluid velocity vanishes as z → −∞. The fluid velocity in the far-field z → ∞ remains to be determined in accordance
with conservation of mass. Initial conditions correspond to an upper layer (z > 0) with mass fraction s+ and a lower layer (z < 0) with
mass fraction s−. These conditions represent two layers initially separated that mix diffusively inside of a container closed at the bottom
and open at the top. Here, the bulk fluid below the interfacial region is expected to be motionless while the bulk fluid above the interfacial
region will experience a uniform flow due to volume change associated with the diffusion process occurring in the interfacial region.
We first note that Eq. (54) determines the pressure and is decoupled from Eqs. (52) and (53). Making use of ρ = ρ∗f (s) we can write

Eqs. (52) and (53) as

f ′(s)
[
∂s
∂t
+ w

∂s
∂z

]
+ f (s)

∂w

∂z
= 0, (55)

f (s)
[
∂s
∂t
+ w

∂s
∂z

]
= D

∂

∂z

[
f (s)

∂s
∂z

]
. (56)

Eqs. (55) and (56) can be solved by introducing the similarity transformation

η =
z

2
√
Dt
, w =

Q (η)

2
√
Dt
. (57)

Transforming the derivatives in the standard way

∂

∂t
→−

η

2t
d
dη
,

∂

∂z
→

1

2
√
Dt

d
dη
, (58)
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Fig. 2. This figure shows the numerically computed species profile, s and velocity function Q for the density function given by Eq. (61). Here s+ = 0.3, s− = 0.1, LP = 16
and LM = −16 and N = 160.

leads to a pair of ordinary differential equations for s and Q

d
dη

[
f (s)

ds
dη

]
+ f (s)(2η − Q )

ds
dη
= 0, (59)

f (s)
dQ
dη
− f ′(s)(2η − Q )

ds
dη
= 0. (60)

These equations are subject to boundary conditions s→ s+ as η→∞ and s→ s− and Q → 0 as η→−∞.
We have examined the solution of (59) and (60) numerically on a finite interval LM < η < LP . This interval was discretized into N

equal subintervals, the ODEs were discretized and the resulting system of nonlinear equations solved in two different ways for purposes
of validation: a standard Newton’s method and Matlab’s fsolve command. The values of LM , LP and N were chosen so that the solution
structure through the interfacial region was independent of these numerical parameters.
Fig. 2 shows the numerical solution of Eq. (59) and (60) for the nonlinear density function f (s) given by

f (s) = 0.8319s3 + 0.4958s2 + 0.8417s+ 0.9982, (61)

where ρ∗ = 1 g cm−3. The species mass fraction connects smoothly through an interfacial region between the far-field values s+ and s−.
The lower fluid layer is stagnant while a uniform flow towards the interfacial region occurs in the upper fluid layer. Within the interfacial
region, themagnitude of the flow reaches amaximum. The diffusion of species gives rise to a change in fluid density and the corresponding
volume change creates a local flow in the interfacial region aswell as the spatially uniform flow in the upper bulk layer. HereQ →−0.0028
as η→∞.
An approximate analytical representation of this structure can be obtained for a linear density function f (s) = 1 + as in the limit

a→ 0 (details are given in Appendix A). We find that the leading-order species profile satisfies a standard linear diffusion equation and
has solution

s = s− +
1
2
(s+ − s−)[1+ erf(η)] + O(a). (62)

Fig. 2 shows this solution (dashed line) in the upper plot; on the scale shown this line is nearly coincident with the full numerical solution
with a nonlinear density (solid line). The corresponding flow is

Q = −
a(s+ − s−)
√
π

e−η
2
+ O(a2), (63)

which shows that to leading-order in a, the flow is localized in the interfacial region. A far-field flow (η→∞) scales with a2 and can be
expressed as

Q (η→∞) = −

√
2
π
(s+ − s−)2a2 + · · · . (64)

This diffusion-driven volume change flow is towards the interfacial region regardless of the sign of the jump in speciesmass fraction across
the interface.
A key feature of these solutions for either the linear or nonlinear density function, at least in terms of the sharp-interface analysis to

follow, is that the thickness of the interfacial region li scales with
√
Dt . Therefore, for finite time, li → 0 as D → 0. Furthermore, the

diffusive flux

D
∂s
∂z
∼ D

1
√
Dt

∂s
∂η
∼
√
D/t → 0 (65)

in the limit D→ 0 for finite time. We shall incorporate this scaling information into the sharp-interface analysis given below.
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5. Sharp-interface limit of diffusion-based model

The sharp-interface limit of Eqs. (49)–(51) can be obtained following procedures similar to those used in analysis of phase-fieldmodels.
We shall adopt a ‘pillbox’ approach (see for example the sharp-interface analysis described in [13]) although an approach that specifically
introduces surface-fitted coordinates (e.g. [14]) and generates inner and outer solutions to these equations via matched asymptotic
expansions is also possible (see for example [15]).
In the following analysis, we shall assume that the dispersion tensor can be written D = DD where D is a scalar diffusion coefficient

representative of the scale of D andD is an O(1) tensor. In particular, we wish to examine Eqs. (49)–(51) in the limit D→ 0.
In an effort to streamline the notation asmuch as possible we shall restate Eqs. (49)–(51) by dropping the subscript ‘0’ from the original

homogenization expansion. We then have for the leading-order homogenized problem for the diffusion-based model the equations

∂ρ

∂t
+∇ · (ρu) = 0, (66)

∂(ρs)
∂t
+∇ · (ρsu) = D∇ · (ρD · ∇s) , (67)

u = −Keff ·
[
∇φ + (f (s)− 1)k̂

]
. (68)

As observed in the analysis and solution of the one-dimensional problem in the previous section, the thickness of the diffusive interfacial
region scales with li ∼

√
Dt . For sufficiently large times, the diffuse-interface thickness will reach the size of any finite size container even

for caseswith small solute diffusion. Our interest here is to extract the sharp-interface limit of the above equations for finite time scenarios;
that is, li → 0 as D→ 0.
Away from such a thin interfacial region the system is in one of two bulk regions characterized by uniform densities ρ± and species

mass fraction s± such as would be the case for the (finite time) evolution of a dense brine system surrounded bywater.We assume that ρ±
and s± are constants. Under these assumptions, the leading-order equations that follow from Eqs. (66)–(68) for the two bulk fluid regions
are

∇ · uj0 = 0, (69)

uj0 = −Keff ·
[
∇φ

j
0 + (f (s

j
0)− 1)k̂

]
. (70)

The corresponding interfacial jump conditions that couple these bulk equations are now obtained by examining each of the governing
equations in turn.
Continuity equation:We apply a standard pillbox argument (e.g. [13]) first to the continuity equation (66)

∂ρ

∂t
+∇ · (ρu) = 0. (71)

Integrating this equation over a pillbox of volumeV attached to the interface and using the divergence theorem and the transport theorem
gives

d
dt

∫
V

ρdV −
∫

S

ρvI · n̂dS +
∫

S

ρu · n̂dS = 0 (72)

where vI is the interface velocity vector.
The volume integral term vanishes in the limit ofV → 0 since the time variation of the total mass in the volume is bounded. This then

gives ∫
S

ρ(u− vI) · n̂dS = 0. (73)

Arguing that the contributions from the sides of the pillbox vanish and that the interfacial region contained by the pillbox can be chosen
arbitrarily leads to the standard mass continuity condition

ρ(u− vI) · n̂ |+− = 0. (74)

We define a mass flux J = ρ1(u1 − vI) · n̂ = ρ2(u2 − vI) · n̂ so that this condition requires continuity of mass flux, J |+− = 0.
Species Diffusion Equation:We next apply a similar pillbox approach to the species diffusion equation (67)

∂(ρs)
∂t
+∇ · (ρsu) = D∇ · (ρD · ∇s) . (75)

Integrating this equation over the pillbox, applying the divergence theorem and transport theorem gives

d
dt

∫
V

ρsdV −
∫

S

ρsvI · n̂dS +
∫

S

ρsu · n̂dS = D
∫

S

ρ(D · ∇s) · n̂dS. (76)

Again the volume integral vanishes in the limit V → 0 since the time variation of the integral ρs is bounded. Then, since diffusive flux
D∇s→ 0 as D→ 0 (see Section 4) one obtains

ρs(u− vI) · n̂ |+− = 0. (77)
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In terms of the mass flux J , noting that J |+
−
= 0 we have

J
(
s |+
−

)
= 0. (78)

Now, since the jump in species fraction s is nonzero, this condition can be satisfied only if J = 0. That is, in this limit, the interface is a
material interface where

u1 · n̂ = u2 · n̂ = vI · n̂. (79)

Darcy Equation: Finally, we apply the pillbox argument to the Darcy equation

u = −K ·
[
∇φ + (f (s)− 1)k̂

]
, (80)

where we will interpret K as either the constant Keff in the homogenized diffuse-interface model [see Eq. (68)] or a variable permeability
that could depend on X = x/ε and/or Z = z/ε [e.g. as in Eq. (32) or (36)]. Integrating over the pillbox volume V gives∫

V

udV = −
∫

V

K · ∇φdV −
∫

V

(f (s)− 1)K · k̂dV . (81)

The first and third integrals in this expression have bounded integrands and consequently asV → 0 these integrals vanish. The remaining
expression gives

0 =
∫

V

K · ∇φdV

=

∫
V

[∇ · (Kφ)− φ∇ · K] dV ,

=

∫
S

φK · n̂dS −
∫

V

φ∇ · KdV . (82)

In the case where K = Keff is constant, such as in the homogenized, diffuse-interface problem of Model 3 the last volume integral in the
above expression vanishes. It follows that the jump in φ across the interface is zero

φ |+
−
= 0. (83)

If instead we had examined the variable media, diffuse-interface model in which the permeability was a function of fast variables
K = K(x/ε, z/ε) (i.e. Model 1), the term ∇ · K would be nonzero in general and would scale with 1/ε. However, in this case the volume
integral in the last expression in Eq. (82) would scale with li/ε and hence would vanish in the sharp-interface limit li → 0 with fixed
ε > 0. The result would suggest that

φK · n̂ |+
−
= 0. (84)

If K is continuous across the interface we would again recover the interfacial jump condition (83).
Summarizing the above results, we find that the homogenized diffuse-interface model (i.e. Model 3) reduces in the sharp-interface

limit to Eqs. (69) and (70) in the two bulk regions subject to interfacial boundary conditions given by Eqs. (79) and (83). This problem is
precisely that identified in Eqs. (26)–(29) by homogenizing the variable coefficient two-fluid sharp-interfacemodel via the ‘pre-averaging’
condition (i.e. Model 4). Similarly, the variable media diffuse-interface model [i.e. Model 1 in Eqs. (30)–(32) or (34)–(36)] reduces to the
variable media sharp-interface model [i.e. Model 2 in Eqs. (1)–(3)].

6. Conclusions

Previous homogenization techniques applied to sharp-interfacemodels (AMM)have employed an adhoc ‘pre-averaging’ of the interface
followed by a more rigorous asymptotic averaging of the governing equations and interfacial conditions [7]. This ‘pre-averaging’ has been
justified previously in AMM by the favorable comparison of the resulting homogenized solution to numerical solutions of slender gravity
current problems. In this work, we have examined both sharp-interface and diffuse-interface models of two-fluid flow in heterogeneous
porous media in order to understand homogenization theory in the presence of interfaces as well as to provide further justification for the
use of the ‘pre-averaging’ techniques in AMM.
In the analysis of the present paper, the species diffusion in the diffuse-interface models was characterized by a diffusion coefficient D

and the length scale of the media variations was characterized by ε. We have shown that the limiting case D→ 0 (sharp-interface limit)
and ε → 0 (leading-order homogenization) can be obtained by two distinct approaches. One approach startswith a variablemedia, diffuse
interface model and first applies a homogenization procedure (ε → 0 with fixed D > 0) and then examines the resulting homogenized
diffuse-interface model in the sharp-interface limit D → 0. This approach contrasts, but at the same time provides justification for, a
second approach which can be viewed as reversing the order in which the above limits are taken. That is, the variable media, diffuse-
interface model leads to the variable media, sharp-interface model via a sharp-interface analysis (D → 0 with fixed ε > 0). Then, a
subsequent homogenization procedure based on methods proposed in AMM lead to a homogenized, sharp-interface model (ε → 0)
equivalent to that derived via the first approach. In addition to providing justification for homogenization techniques applied previously
to the sharp-interface model directly, analysis of the diffuse-interface model also illuminates the detailed structure of the density field
and flow through the interfacial region.
The diffuse-interfacemodel examined heremay provide a setting in which other issues involving homogenization of systems involving

free surfaces may be carefully investigated. For instance, the homogenization procedures for the sharp-interface models of AMM in non-
slender settings, which gave consistent leading-order results, suggested disagreement between the first-order corrections in the bulk
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regions and first-order corrections at the interface. An investigation of these corrections in the diffuse-interface model, where interfacial
conditions are handled implicitly, may help to resolve such issues. Here the relative scaling of the permeability variations with respect to
the diffusive interface length scales may also be important. For example, in the combustion modeling literature it has been documented
[16] that predicted behaviors such as front propagation speeds can depend dramatically on the assumptions made regarding how small
turbulent lengths scale relative to the interface thickness. It is possible that similar complexities may appear in the present model.
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Appendix. One-dimensional solution for a → 0

Here we present a perturbation solution to Eqs. (59) and (60) for f (s) = 1+ as. In particular, we let

s = s0 + as1 + a2s2 + · · · , (A.1)

Q = Q0 + aQ1 + a2Q2 + · · · . (A.2)

At O(1)we find that

d2s0
dη2
+ 2η

ds0
dη
= 0, (A.3)

dQ0
dη
= 0. (A.4)

Taking into account the boundary conditions for Eqs. (59) and (60) we find that

s0 = s− +
1
2
(s+ − s−)[1+ erf(η)], (A.5)

Q0 = 0. (A.6)

At O(a)we find that

d2s1
dη2
+ 2η

ds1
dη
= −

d
dη

[
s0
ds0
dη

]
+ (Q1 − 2ηs0)

ds0
dη
, (A.7)

dQ1
dη
= 2η

ds0
dη
. (A.8)

The solution for Q1 is

Q1 = −
ds0
dη
. (A.9)

Then, the equation for s1 can be reduced to

d2s1
dη2
+ 2η

ds1
dη
= −2

(
ds0
dη

)2
. (A.10)

We can use an integrating factor to integrate this equation once. We obtain

ds1
dη
= −

(s+ − s−)2
√
π

e−η
2
erf(η)+ Ce−η

2
, (A.11)

where C is an arbitrary constant.
At O(a2)we focus just on the equation for Q2 which is

dQ2
dη
= −

d2s1
dη2
− 2

(
ds0
dη

)2
+
d
dη

(
s0
ds0
dη

)
, (A.12)

so that

Q2 = −
ds1
dη
+ s0

ds0
dη
− 2

∫ η

−∞

(
ds0
dη

)2
dη. (A.13)
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Noting that both ds0/dη and ds1/dη vanish as η→∞we find that

Q2(η→∞) = −2
∫
∞

−∞

(
ds0
dη

)2
dη,

= −
2(s+ − s−)2

π

∫
∞

−∞

e−2η
2
dη,

= −

√
2
π
(s+ − s−)2. (A.14)

Therefore, using the results for Q0, Q1 and Q2 we find that

Q (η→∞) = −

√
2
π
(s+ − s−)2a2 + · · · . (A.15)
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