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We explore the problem of a moving free surface in a water-saturated porous medium that has either
a homogeneous or a periodically heterogeneous permeability field. We identify scaling relations and
derive similarity solutions for the homogeneous, constant coefficient case in both a Cartesian and an
axisymmetric, radial coordinate system. We utilize these similarity scalings to identify half-height
slumping time scales as a rough guide for field groundwater cleanup strategies involving injected
brines. We derive averaged solutions using homogenization for a vertically periodic, a horizontally
periodic, and a two-dimensional periodic case—the solution of which requires solving a cell
problem. Using effective coefficients, we connect the first two of these homogenized solutions to the
similarity scaling solution derived for the homogeneous case. By simplifying to a thin limit,
retaining variations of the porous media in the horizontal direction, we derive a homogenization
solution in agreement with the general horizontally layered solution and an expression for the
leading-order correction. Finally, we implement two numerical solution approaches and show that
self-similar scaling and agreement with leading-order averaging emerge in finite time, and
demonstrate the accuracy and convergence rate of the leading order correction for both the interior
and the boundary of the domain. 2003 American Institute of Physics.
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I. INTRODUCTION are of interest for the economical assessment and design of

Groundwater is an important resource, which is reliegSUch technologies. The complexities of the physics of
upon by about half of the population of the U.S. as a sourcéensity-dependent multiphase flow in heterogeneous porous
of drinking water. Over the past few decades, releases dhedium systems makes this class of problem challenging. As
contaminants that are immiscible with water into the shallowa first step in our efforts to analyze this problem, we focus on
subsurface has occurred in many instances, leading to cothe dynamics of a gravity-driven redistribution of a single
taminated conditions that pose a threat to human and ecelense fluid in heterogeneous porous medium.
logical health. Due to capillary forces, such contaminants are  Much is known about gravity-driven motion of a fluid
trapped in the pore space of the porous media existing in thgyss in a uniform porous medium. Theoretical descriptions

subsurface, leading to long-term sources of contamination,s yhe sjumping of a groundwater mound and the historical
While much is known about such multiphase systems, man&evelopment can be found in B&amd Barenblatf. Classi-

open questions still reman. al similarity solutions satisfying the Boussinesq equation
Remediation of porous medium systems contaminated y' ) 9 q€q ,
rous medium equatiprhave been a central part of this

by nonaqueous phase liquids that are more dense than Wat(@to i .
(DNAPLs) are a particularly difficult class of problem, development. Extensions of these solutions have, for ex-

which motivate this investigation. Recently, Miller and co- ample, accounted for capillary effects in which some fluid is
workers have advanced a set of remediation strategies thkgft behind in the draining region and not all pore space is
rely upon the use of dense brine solutions to mobilize omoccupied in the filing region(see Kochinaet al® and
contain DNAPL contaminants in porous medium systérhs. Barenblafl). Properties of similarity solutions of the classi-
Since the brines used in these remediation technologies agg| porous medium equation and its close relatives have been
significantly more dgnse than water and reIative!y expensivewrefu”y documentede.g., Witelski and Bernofj. The util-

the dynamics of brine behavior in porous medium system§ty of these solutions in characterizing the long-time
asymptotic behavior of fluid motion in spatially uniform po-
dTelephone: (703 993-1482; fax: (703 993-1491. Electronic mail:  rous media is well known. In the present work, we are inter-
danders1@gmu.edu ested in extending the utility of these free-boundary problem

YElectronic mail: rmm@amath.unc.edu . i ) i ) ) ) .
®Electronic mail: caseyniller@unc.edu solutions using homogenization techniques to situations in
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which a spatially periodic background permeability variationwe will ignore the multiphase and compositional nature of
is present. the motivating problem and focus on an analysis of the dy-
There has been some recent work in which the homoghamics of a single-phase free-surface problem for a single
enization of problems involving interfaces has been adfluid in a heterogeneous porous medium.
dressed. Friedman, Hu, and Eiused homogenization theory The situation we consider here is that of an initial vol-
for the Poisson equation on a domain with a rapidly oscillat-ume of fluid in a porous media that is released and slumps
ing structure along one of its boundaries and developed erramder the force of gravity. In this context we refer to the
formulas for these approximations. Friedman and ldnd  volume as the volume of bulk porous medium that can be
Friedman® applied similar analyses to a free-boundary prob-saturated by the volume of water in the initial region, assum-
lem for a chemical vapor deposition model that incorporatedng a constant porosity and field capacity. Experimentally, for
a rapidly varying periodic structure on the growing substrateexample, this could represent crudely the flow of a core of
They described the existence and uniqueness properties fbquid initially held in a vertical cylinder and then released
the homogenization approach and gave error estimates assnto a porous media drained to field capacity. Alternatively,
ciated with the homogenized boundary. the fluid could represent the elevated brine layer injected into
Here we address the mathematical assessment of avex-water-saturated porous media, which does not quickly mix
aged time scales for the slumping of a gravity current inwith the water, but forms an elevated slumping gravity cur-
porous media, and the study of the ensuing interface shapesnt. Of course, the fully coupled water—brine system is
reflecting the underlying permeability properties. We will fo- more complex, requiring at the very least an evolving density
cus upon situations in which a fixed volume, elevated, localvariable, we focus upon the simpler single-fluid case for ease
ized brine layer is allowed to spread under the action obf exposition.
gravity in an isotropic, nonuniform permeability porous me- Flow in porous media is typically characterized by slow
dium on top of an impermeable bottom layer. pressure-driven motion. In particular, for incompressible
The paper is organized as follows. In Sec. I, we over-flow in a porous media without mass sources or sinks we
view the equations of motion for such a moving interfacehave
problem. In Sec. lll, we review known similarity solutions -
for this system for the simplest case of a constant permeabil- U= ~K(X,2)[Vp+pgk], @
ity tensor*® and use these solutions to predict associated V-u=0 )
half-height slumping time scales for the gravity current. In ’
Sec. IV, we apply homogenization methods to calculate thavhere u is the fluid velocity,p is the pressureK=k/u,
effective nonlinear moving interface dynamics, first for ex-wherek is the permeability andk is the viscosity,p is the
plicit cases with variable coefficient permeability corre- density of the fluidg is gravity, andk is a unit vector in the
sponding to horizontally and vertically layered media, thenvertical direction. The quantiti(.=kpg/u is called the hy-
turning to the case of a doubly periodic permeability varia-draulic conductivity! and we are interested in cases where
tion. In Sec. V, under the assumption of a thin gravity cur-this has a prescribed spatial variation. While Ed$.and(2)
rent, we derive and analyze using homogenized averaging are linear, the problem under consideration here is nonlinear
scalar nonlinear variable coefficient partial differential equa-due to the moving interface.
tion for this limit. We homogenize this equation and compute ~ The interface defines the shape of the fluid mass as it
the leading-order and the corrected height fields. In Sec. VIiflows through the medium. Mass conservation requires that
through a direct comparison between computational simulad-n=U,-n at the interface, wher#, is the velocity of the
tions of this equation and the homogenized dynamics, wénterface andh is a unit normal vector. In the case of interest
provide compelling evidence for the success of the averaginfere, we represent the interface positiorzbyh(x,t), where
approach for this nonlinear moving boundary problem. we assume symmetry aboxt=0 and represent the velocity
of the interface adJ,=h;k. Then, with the fluid velocity
defined with components= (u,w), this kinematic condition
is written as
The problem that motivates this study involves three oh
fluid phases: a heterogeneous porous medium, and fluid com- — 4+ y—=w, atz=h. 3
position effects that determine the density of the fluid and the at X
interfacial tension between binary groupings of phases. Th@dditional conditions on the field variables are
physics of this situation are complicated and involve issues
such as capillary trapping and hysteretic constitutive W=0, atz=0, (4)
relations! The modeling of such a system in a physically
realistic way requires a compositional, multiphase model in
which the composition of each fluid pha&eater, DNAPL, wherep, is the atmospheric pressure. The first of these rep-
and gag and the volumetric phase distributions are evolvedresents an impermeable layerzat 0 and the second states
in time in a heterogeneous porous medium. In this work, wehat the pressure at the free surface is atmospheric pressure
wish to analyze a simpler problem as a first step to givgwe can setp,=0 without a loss of generality The free
general guidance to assess the behavior of such systems asutface conditior(3) also requires boundary conditions, and
estimate the relative time scale for brine slumping. As suchthese are given by

II. THE NONLINEAR INTERFACE PROBLEM

p=pa, atz=h, (5)
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oh flows under the force of gravityas governed by the above

- 0 atx=0, (6)  equations Here we assume that the permeability coefficient
is constant. These scaling arguments lead to the identification

h=0, atx=R(t), (7)  of simple formulas for the spatial evolution of the fluid mass

whereR is the radial position of the contact line. The first of as well as similarity variables for which an exaelf-

these is a symmetry condition and the second is the conditioi\'m'lar) solution exists. This self-similar form is well

4,5 . .
of contact. A final condition states that the contact line posi-- o' 1 S|m|lar analy.f,es have been performed by
Huppert! for viscous gravity currents, Huppert and Wotsds

tion moves with the horizontal fluid velocity at the contact , : 13
line boundary, for g.rawty curre'nts in porous layers, and by Actenhal.
for viscous gravity currents over porous media. Our purpose
for outlining the results here is for a later comparison and use
of them in the context of porous media flows with nonuni-
form permeability.
In component form, the two-dimensional equations are

dR 3
E—U(R,t), at x=R(1). (8

This condition can be derived from E) with the use of
conditions(4) and(7) and therefore is in some sense redun-

dant. It does offer a clear physical picture of the motion of ap

the contact line, however, and as a reduced form of(8cat u=—-K-= (13
the contact line it will appear again in one of our numerical

approaches implemented in Sec. VI. The bulk of the analysis ap

presented here will focus on Eq4)—(3). A further discus- w=-K o7 P9 (14)

sion of the conditiong6)—(8) as well as alternative condi-
tions useful for a numerical solution is presented in Secs. V. du  dw
and V1. T -0 (15)
For initial conditions, we assume a given profile,
h(x,0)=hy(x), and we assume that initially that the fluid and
itself possesses no motion. Note that these equations form a
. . : . oh ah
coupled system, in which the boundary is coupled to the field —+4+y—=w, atz=h. (16)
variables through the moving interface condition. In Sec. V, at X

we identify a slender asymptotic limit in which the interface We letH andR represent vertical and horizontal length

position h may be decoupled to yield a scalar, nonlinear,scgjes associated with the shape of the fluid massTand
variable-coefficient partial differential equation. In general,represent the time scale. The pressure and two velocity scales
the above system requires numerical inversion to handle thge '\ and W will be determined in terms of the physical

variable coefficient nature of the problem. However, in theparameters and the space and time scales. Additionally, we
next section, we present scaling arguments that connect il identify howH andR scale with time.

known similarity solutions and to the slender geometry inthe |, determining the balances that follow, we shall assume

case of a constant-coefficient permeability. _ that in the continuity equatiofil5) both terms balance and
The above governing equations can be recast in terms Qf4¢ in the kinematic conditiofil6) all terms balance. Two

the field variables = p/(pg) + z by combining Eqs(1) and gifterent limits that we consider will arise from different bal-

(2) to obtain a variable coefficient elliptic problem, ances that are possible with respect to the vertical component
V- [Kx,2)V¢]=0, (9)  of Darcy’s equation(14).

A balance of terms in the continuity equati¢bt5) and

subject to boundary conditions also in the kinematic conditiofi6) implies that

P
—=0, atz=0, (10) H H UH
iz W~gU, =~ ~W. (17)
= h ,t s t = h ,t . 11 i
¢=hx.b), atz=h(xt) (D It follows from this that
The kinematic boundary condition may also be recast in R H
terms of the variablep as U~ a3 W a3 (18)
dh a9 (h ¢
gt ax Jo Cﬁdz’ 12 The horizontal component of Darcy’s equatitB) implies
that
which is subject to the same boundary conditions as given
above in Egs(6)—(8). KP
U~ R (19
I1l. SCALING ARGUMENTS FOR A GRAVITY .
CURRENT IN A POROUS MEDIA Balanceg18) and(19) then give the pressure scale as
In this section we outline scaling arguments used to ~R_2 (20)
identify approximately how the fluid in the porous medium KT"
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The terms in the vertical component of Darcy’s equationSince we have assumed thdt-R, balanceg29) and (30)
(14) have the associated scalgdd/R, KP/H, and Kpg, suggest a time scale on which the balance is appropriate,

respectively. In light of the above results, these are namely
HKP  KP Vi
- T~——7. (31

In what follows we consider two limits with respect to the A, Similarity solution based on scaling for H<R
length scaled and R, which lead to two different possible
balances with respect to this equation.

If H<R, then the terms if21) suggest that only the
second two balancéhe first term is smaller by a factor of

We now focus in more detail on the limiH<R de-
scribed in the previous section. In this limit, the leading-
order equations are

H2/R?), which represents a physical balance between the p
vertical pressure gradient and gravity; a hydrostatic balance. U=~ K X (32
In this case, we obtain
p
P~pgH. (22 0=-K E+pg , (33
A comparison of(20) and (22) gives PR
R2 . y (23) 5 + E =0, (34)
—— ~pgH.
KT and
Finally, we relate the length scalésandR through a fixed Jh Jh
volume (per unit length E+u&=w, on z=h(x,t). (35
Vi~RH, (24 Recalling the dimensional form for the vertical component of

Darcy’s law given by(14) and the scaling for each term
given by (21), we note that in the limit wheréd<R the
R~ (pgKV, T)*3. (25 left-hand side of14) can be neglected.

The constant volume per unit length is

to arrive at a scaling dynamics f& given by

This is the scaling for which the liquid blob spreads in the

horizontal direction wheil <R. We can determine the scal- R(t)
ing for H, usingV, ~RH, V'-szo h(x,t)dx, (36
A where R(t) is the location of the contact line where

H~ TT)”S (26)  h[R(t),t]=0. In the following analysis we derive an evolu-
(PgKVL tion equation for the shapg®(x,t) of the liquid volume, and
The notion of a time scale for problems of this nature is a bithen apply the scalings of the previous section to formulate a

of an elusive concept. However, since we have assumed thatmilarity solution representation for the shape.

H<R, comparing balance&5) and (26) suggests a time I_Equation(33)_imp|ies that the_ pressure is hydrostatic to
scale upon which the balance is appropriate, namely leading order. Withp(z=h)=0 this implies
vz p=pg[h(x,t)—z]. (37)
T> . (27) : L
pgK It follows that the horizontal velocity is given by
One interpretation of this is as a relaxation time scale to this — K t?_h (39)
thin (H<R) configuration. U= "Regx

An alternative balance is possible at earlier times if the_l_h tinuit tion th . th tical velocit
horizontal scales and vertical scales balance. That ibl if € continuity equation then gives the vertical velocity

~R, then(21) suggests a pressure scale in which all three 9?h
terms balance given by w=K, P Z. (39
X
P~paR (28) Substituting the results farandw into the kinematic bound-
which in conjunction with balancé0) gives ary condition (35) leads to an evolution equation for the
shape
R~ pgKT. (29
dh d adh
The volume constrain?, ~HR suggests that il Crviiiewl B (40
Vi Recall that we have assumed tlkatis constant in this deri-
~ . (30 )
pgKT vation.
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We summarize the known similarity solutions derived by R(1)
Barenblatt for this scalar nonlinear PDE. Based on the scal- V= ZWfO rh(r,t)dr. (49
ings described in the previous section, we introduce a simi-
larity variable, We can obtain a similarity solution in the limit<R in
terms of the similarity variable,
X
= 41
TR “ - (50
7 K Vt)1/4’
and a rescaled height functidii»), where (Ke
Vv and a rescaled height functidiiz), where
L
h=————1(7). 42
= (). (51)
This solution can be expressed as (KeVD)
v, 9|23 2 This solution can be expressed as
PR S (S
PO sk 2] T kv “ _ 11 0
h(rrt) - 1/2 - g 1/2] (52)
where (KV)M2\ 2\ 8 (K V1)
1(9\2% v, where
Ml ==\ 5| ———5 44
ma() 6(2) (KV, 113 44 h 1 v -
and m 2\/; (KCVt)lIZ’
1/3 and
R(t)= (5) (KVit)*™. (45)
2
— 1/4
The above three formulas apply whem,,(t)<R(t) or R(H= ﬁ(KCVt) : (54)
equivalently when
Again, the time regime represented here is set by the condi-
t> Wi _ (46) tion hy,,(t)<<R(t), which gives
4\/§KC 1 V13
We will make contact with the similarity solution pre- t> (55

sented here for the constant permeability porous medium us-

ing methods of homogenized averaging applied to the morand can be compared to E@7).
general case of a variable permeability medium below. In

particular, in Sec. IV we shall show how the above similarity C. Predictions

solution can be applied to describe the averaged motion of a

i h h ia with icall o :
gravity current through porous media with vertically and/orthe cleanup process, it is important to assess how much brine

horizontally layered permeability variations. Also, in Sec. V, must be continually iniected to maintain an elevated. and
we will make use of slender asymptotics applied to the prob-_ . . y Inj o
lem defined in Sec. Il to decouple the height field from theSPaUally localized brine layer. We may use the similarity

_— . . .. solutions derived above, for the practical case of a radial
elliptic operator. This leads to a scalar nonlinear PDE with™ =~~~ ° . : .

) . ) . . . distribution, to assess basic leakage time scales in a porous
variable coefficientsi.e., K. not uniform in spacethat will

be analyzed using homogenization methods and connectéqaed'u.m for Fhe slumping grawty cur.renF in the absence (.)f
back to the similarity solution presented here. pumping. This pure relaxation analysis gives a good descrip-

. . o .. tion of how long the elevated density layer may persist in a
First, however, we discuss the basic time scales implied : L : S
i . T . field cleanup. Of course, with similarity solutions, initially
by these solutions in maintaining a localized, elevated axi- S : . ,
. L the similarity solutions diverge, and we first must overcome
symmetric density field. . - . .
this problem by waiting a transient time scale to allow the
similarity solution to develop, and then we may use the en-
suing evolution to assess the slumping time scale. We ap-
If we follow a scaling analysis similar to that presented proach this transient time scale by matching a given distri-

in the previous section for rectangular coordinates, we findution of fluid, integrating backward in time following the

Practically, when pumping brine into a field to assist in

B. Similarity solution in axisymmetric coordinates

that the limitH <R in the axisymmetric case has similarity scalings to assess an initial volume and a transient
R~ (K VT4, (47) time scale that w.ou_ld have passeq to r.each the current state
as a means to eliminate the transient time scale.
\Y; Consider a mass of fluid of parabolic shape whose height

H~ (KT 22’ (48)  is h* and whose radius iR*. We are interested in the evo-
(Ke lution of this volume of fluid under the force of gravity. In
whenT>VY9K_, where the volume is given by order to make use of our similarity solution described above,
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TABLE I. Fractional height of fluid mass, time in days, and fraction loss of The corresponding values ef are also shown in Table I.

volume outside given radius: The predictions @e=10m, R*=34.4m,  Thjg i3 effectively just a geometrical relationship given that
andK.=10"*m/s. The corresponding value ©f given by Eq.(56) is 1.72 L .
our similarity shape is a parabola.

days.
N=h/h* time in days 0=V, !V
IV. EFFECTIVE FRONT DYNAMICS: HOMOGENIZED
1 0 0 AVERAGING OF THE GRAVITY CURRENT
0.8 0.97 0.04
0.5 5.1 0.25 With the similarity scalings and solutions identified, we
0.25 25.7 0.56 proceed to the more complex case involving a nonconstant
8'1 1708 10'81 coefficient permeability. In this section we apply methods of

homogenized averaging to assess the effect of the variable
permeability upon the slumping interface. We note that there
is a tremendous literature for homogenization in many
contexts:*~2! most typically applied to linear problems.
we can associate thIS Shape W|th a S|m||a.r|ty SO|uti0n OfHere, we stress the problem addressed in th|s paper iS non-

some*initial volume at a particular tim&. In terms ofh® jinear through the moving boundary condition. As such, we
andR*, the volume and associated time are given by show formally how the averaging procedures work in this
(R*)2 more difficult context, and document its success numerically

(56) below in Sec. VI.
To leading order, we will find that the homogenized
These relationships follow from Eq&3) and (54). equations share essentially the same form as the constant
Now, if we are interested in predicting the time it takes coefficient equations analyzed previously, with the constant
for this mass of fluid to evolve from its initial heiglht® to ~ permeabilities replaced by constant, effective permeabilities.
some other heighh(t), where we definev=h(t)/h*, we As such, the time-scale analyses from the previous section

V= zh*(R*)Z t*
2 ’ 8K h*

find that will apply to these averaged dynamics in an identical fash-
1o . ion, only with the permeability replaced by an effective per-

A= v _ t (57) meability. We will document how this averaging works in
2h* K (t* +1) t*+t this nonlinear problem in cases with horizontally or verti-

cally layered permeabilities. We also describe a general case
in which the permeability varies in two spatial directions.
Here we will present only the leading-order calculations, and
defer the interesting corrections to future work. In what fol-

where we have introduced the timéhat measures the time
of evolution from the shape with height and radiusR*.
We solve the above equation forand find that

1 (R*)2\ [ 1 lows, the isotropic form of the permeability is modified
T=t*(—2—1) mFra (—2— ) (58  through the averaging procedure to different permeabilities
A ¢ A in the horizontal and vertical directions. We show how to

Table | shows some data representative of an idealizef@ke contact to the similarity scalings derived in Sec. Il
example of groundwater flow. Forct*, no fluid is outside  through the leading-order homogenization.
the radiusR*. For t>t*, the volume of fluidV,, outside

this boundary can be represented by the integral A. Homogenization theory: Vertical layers
Ro() In this section we consider the situation in which the
Vout(t)=2wf rh(r,t)dr, (590  permeability of the porous medium is rapidly varying in the
R*

horizontal direction so that layers of constant permeability
where h(r,t) is given by Eq.(52). Upon working out this are oriented vertically. Specifically we writ€¢.=K.(x/¢),

integral, we find that where € is a small parameter; we shall examine the limit
Vas 272 e—0. For simplicity, we shall assume thit.(x/€) is a pe-
o= Voult) —l1- TR (60) riodic function with unit period. We consider the governing
Vv 2[ K V(t* +T)]1/4 equations in the two-dimensional setting,
In a similar manner to the above calculation, we find that the U= —K(X)V &, (63)

time for which a certain percentage of the volume of fluid

u= 4
(measured by») to be outside a radiuR* is given by V-u=0, (64)

where X=x/e. The kinematic boundary condition is given

e L | [R)? 1, by Eq. (3.
- (1- Jo)? ~ 1 8Kh* (1— Jo)? ' We proceec_j using a muItische analysis in whicmnd X
(61)  are treated as independent variables so that

Perhaps more simply, we can relate the fractional heightre- ¢ ¢ 1 4

maining\ to the fractional volume losb as x T ox T eax 69

w=(1-)\)2 (62) Further, we expand the variables
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d(X,X,Z,t) = po(X, X,Z,t) + €p1(X, X,Z,t) +- -+, (66)
u(x,X,z,t)=up(x,X,z,t) + eus(x,X,z,t) + (67)
W(X,X,z,t)=Wqu(X,X,z,t) + ewy (X, X,z,t) +- -, (68)
h(x,X,t)=hg(x,X,t)+ eh(x,X,t)+--- (69

Anderson, McLaughlin, and Miller

d dpy I,
{ (X)( X ax”
9 dbo by 2¢>o
- <X>< s ax” KX =22 (80

Averaging this equation and making use of E¢&7) and

At O(1/e) the horizontal component of Darcy’s equation (7g) jeads to the result that

gives

0=Ko(X) s ¢°

(70)
which leads to the conclusion thét, is independent oK so
bo= d(X,z,t). At O(1) we find expressions for the leading-
order velocity components,

Uo(X, X zt)——Kc(X)[ %o (Zf(l} (72)
WO(X,X,z,t)=—KC(X)a(%O. (72

Since ¢y is independent oZ we can average/ to find that

do
(wo)=—(Ke)—— (73
Here(-)=[,*-dX. In order to work out the average af,
we shall first examine the equation fey

0=V [K(X)V¢]. (74)
Expanding Eq(74) gives atO(1/e?) that

_ deo
0= W[KC(X)W : (75

which we know is identically satisfied sineg, is indepen-
dent of X. At O(1/e) we find that

J dd, J ddg
ax[ oX) x| = 7 ax | KeX) ax}
J ddg
X vl (76)
which upon integrating once gives
¢1 9o
C(X) ax A(X1 ’ )y (77)

whereA(x,z,t) is an integration constant to be determined.

Averaging this result and assuming tha{ is periodic[that
iS, #1(X=0)=¢1(X=1)], we have

-1
A(x,z,t)= <K > aqso

ax
Now Eqg. (71) implies thatug(x,X,z,t) = —A(X,z,t) is
independent oK, so

=g
Ug=(Ug)=—{ —
0 0 Kc
Expanding Eq(74) gives, atO(1),

(78)

L,

pat (79

-1 02 ¢O
x?

(81)

7o < 1>
0=(Ke)— +\ k.
This equation shows the anisotropy that is built into the
equations from the vertical layering, with one coefficient cor-
responding to the arithmetic mean of the permeabilities and
the other corresponding to the harmonic mean as observed
by others, in the absence of the nonlinear moving boundary
condition?° These coefficients are reversed relative to the
horizontally layered media discussed in the next section.

Next, examining the continuity equatid®ru=0 we find
that the O(1/e) problem is identically satisfied since,
=Uup(x,z,t) and that theD(1) problem is

ug)  Hwp)
X 9z

(82

Finally, if we expand the boundary conditié8) applied
at z=h(x,X,t), we find that atO(1/e),

ho

O = Uoﬁ y (83)

which implies thathy=hg(x,t) is independent ofX. The
O(1) contribution from Eq(3) is

Yoox — 7 ot Yoax
Averaging this equatioriintegrate inX from 0 to 1 and
assuming the periodicity di; gives

oho,  ho_
—r T{Uo) —~=(Wo).

+Wwg. (84

(85

So the full set ofaveragedeading-order equations are

<uo>——< C> aio, 86)
P

(o) =~ (K9 22 &
d(Ug) (W)

T o oz -’ (88)

and

aho dh, .

+(uo) —— X ° = (wp). (89

The average horizontal flow is proportional to the har-
monic mean of the permeabilities, while the vertical flow is
proportional to the arithmetic mean of the permeabilities.
This is a well-known property of layered metifd and the
difference can be significant, especially if the permeability of
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any layer is near zero. In such a case there would be vertical

flow through the regions of higher permeability but nearly no

horizontal flow, as the fluid must attempt to flow across the

regions of low permeability.

B. Similarity scalings for the averaged dynamics:
Vertical layers

To make contact to the similarity analyses presented in

Sec. Ill, we now subject Eq$86)—(89) to the limit H<R.
We have [in terms of the leading-order pressung,

= po(X,Z,t)]

1\ 1o
<U0>:_<R> %. (90)
dPo
0=—E—P9 (92)
~ ug) A wo)
% dz ' (92)
and
o TN 93

The averaging of gravity currents in porous media 2817
w(Xx,z,Z,t)=wy(X,2,Z,t) + ewq(X,Z,Z,t) +- -, (99
h(x,t)=hg(x,t)+ eh(x,t)+---. (99

Note here thah is assumed to not depend on the fast sZale
At O(1/e) the vertical component of Darcy’s equation is

dbo

OZKc(Z)a—Z,

(100
which leads to the conclusion théa, is independent o so
bo= P(X,z,t). At O(1) we find expressions for the leading-
order velocity components,

Ug(X,Z,Z,t) = — (Z)ﬂ (101)
PYS
Wo(X,2,Z,1) = —K(2) ;;0 j; (102

Since ¢ is independent of we can average, to find that

J
()= (K 2. 103

Here(-)=[5-dZ. In order to work out the average of,,
we shall first examine the equation fey

Note that only the effective permeability appearing in the

horizontal component of Darcy’'s equation governs the 0=V [K.(2)Vda]. (104
slumping gravity current. The form of these equations is . , )

equivalent to Eqs(32)—(35), from which we derived the EXPanding Eq(104) gives atO(1/e%) that

similarity solution. Consequently, Eq&l3)—(46) apply here ¢

simply by replacing in those formulas witf1/K ) . We 0= &Z{ C(Z) (105

confirm in Sec. VI that these equations give rise to a leading-
order problem that agrees well with numerical simulations ofyhich we know is identically satisfied sineg, is indepen-
the full PDE that incorporates a permeability function with gent ofz. At O(1/¢) we find that

dependence of the fortd.(x/e).

d a</>1 d (9¢o
C. Homogenization theory: Horizontal layers Eva C(Z) T oz C(Z)
In this section we consider the situation in which the Ido
permeability of the porous medium is rapidly varying in the 7 K(Z) Al (106
vertical direction, that is, layers of constant permeability are
oriented horizontally. Specifically we writ&.=K(z/¢€), which upon integrating once gives
where e measures the length scale of the variation and ex-
amine the limite—0. For simplicity, we shall assume that dy  dgg
K¢(z/€) is a periodic function with period unity. The gov- Ke(2)| 57 aZ 9z " Jz =AXz, (107

erning equations are the same as in the case of vertical lay-
ers, except that Darcy’s equation is now written as whereA(x,z,t) is an integration constant to be determined.
Averaging this result and assuming thgf is periodic inZ,
u=-K(2)Ve, (94  we have

whereZ=7/e.
We proceed using a multiscale analysis in whidmdZ
are treated as independent variables, so that

_la
A(X,z,t)= <K> jz)o.

Now Eq. (102 implies thatwg(x,z,Z,t) = —A(X,z,t) is
(95  independent of using Eq.(107). Therefore, using108) the
averagedwy is

1\ -1
wo=-{x) .

Continuing to theO(1) problem from Eq.(104) gives

(108
Jd Jd 1 9
— —t——=.
dz dz € dZ

Further, we expand the variables

d(X,2,Z,t)= po(X,2,Z,t) + €p1(X,Z2,Z,t) + -, (96) (109

u(x,z,Z,t)=ug(x,z,Z,t) + euy(x,z,Z,t) +---, (97
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d da| deo dho dhy
ﬁ[Kc(Z)E}__g[KC(Z)W W+<UO>W_<WO>- (117
dpy g Compare these with Eq&36)—(89). Notice that here the av-
T az Ke(2) EJF 9z erage horizontal flow is proportional to the arithmetic mean
s of the permeabilities, while the vertical flow is proportional
-— K(2) 5_21 _ (110 to the harmonic mean of the permeabilities.

D. Similarly scalings for the averaged dynamics:

Integrating this equation once, using the result AgKx,z,t) Horizontal layers

and periodicity of¢,, we find that
To make contact to the similarity analyses presented in

B Ppo | 1\ TP Sec. I, we now subject Eqg114)—(117) to the limit H
0=(Ke) %2 + K_c P (11D <R. We have[in terms of the leading-order pressupg
. i :pO(X!Z!t)]
Here the same two averages of the permeability function
appear but are associated with the opposite terms as com- _ 9Po
pared to the case of vertical layers. {uo) {K) X (118
Next, examining the continuity equati®-u=0 we find
that the O(1/e) problem is identically satisfied since O:_@_ (119
=wp(X,z,t) and that the average@(1) problem is Jz rg;
dug) ~ &(Wo) a(ugy 3 Wo)
Y + 57 =0. (112 0= o + — (120

Finally, we must address the boundary conditi8happlied ;.
at z=h(x,t). We note that the coefficientg(x,z,Z,t) and

Wo(X,z,t) must be evaluated at=hg(x,t). It is clear what dhg dhg

to do in the case ofv,, which does not depend on the fast W+<UO>W:<WO>' (121
scaleZ. However,u, does depend oZ and needs to be

evaluated az=h,. In order to get an equation fdr, that Note again that only the effective permeability appearing

approximates the full problem, we shall formally average then the horizontal component of Darcy’s equation governs the
boundary condition irZ as if it were an equation that applied slumping gravity current. The form of these equations is
in a region surrounding the actual boundary and then evalugquivalent to Eqs(32)—(35 from which we derived the
ate the result az=hg(x,t). Doing so gives the prediction  Similarity solution. Consequently, Eqgt3)—(46) apply here
simply by replacingK. with (K.). We confirm in Sec. VI
‘7_h0 +{Ug) (9_h0:<wo>. (113 that these equ_ations giye rise_: toa I_eading-order problem that
at X agrees well with numerical simulations of the full PDE that
incorporates a permeability function with dependence of the
form K.(z/€). We note that there is a length scale set by the

case in which we show that the full numerical solution com- o - ) ) 2
. . L .~ permeability variations in the vertical direction and also one
pares favorably with this approximation. Further justification . . . )
. . o : set by the thinness of the fluid layer and when implementing
of this result can be obtained by parametrizing the interface

by its horizontal positiox=L(z,t) rather than its height. We fnﬁﬁglftlﬁepreeﬁ;ievaébglitzye fgfn fﬁgf&gl Iegno?hes?etjlzts keep in
would then takd (z,Z,t) to be a function of the fast variable 9 '
and identify a mathematical problem essentially like that N . . .
. . . E. Homogenization theory: Two-dimensional
considered above for the case of vertically oriented Iayersperiodicity
We show in Appendix A that, under suitable assumptions,

Justification in this approach is given in the slender limit

doing so leads to an equation identical(1d.3). In this section we describe the leading-order homogeni-
With this in mind the full set ofaveragedeading-order ~ zation problem for a case in which there is rapid variation of
equations are the permeability function in two directions so th&{(X,2),
where X=x/e and Z=2z/e. For simplicity we assume that
(Ug) = _<KC>L¢0 (114 this fL_mction_is perio_dig inX and Z with unit period in each
ax ' direction. This case is important because most natural porous
1\ 1ag medium sy_stems_ have spatial vari_ability in multiple_ dimen-
(Wo)=— <_> _0’ (115 sions, making this a useful extension to our analysis.
Ke Jz We focus on the problem in terms of the functign

which satisfies

0= d{Uo) N d(Wo)

X iz "’ (116

V[KJ(X,Z)V$]=0, (122

and subject to the free-surface boundary condition
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sh dh Y=(Ke)— (Kl V 6]%), (134

E+u5—w at z=h. (123

where (- )= [3[5-dXdZ Further details involved in this
In order to pursue a homogenization with two fast vari- calculation can be found in Holmé&s.

ablesX andZ, we need to decide how to handle the applica- We now address the boundary conditidr23). With the

tion of the boundary condition a=h. We discuss this be- introduction of two new independent variabl¥sand Z, we

low after revisiting the approach used for the equationsnust identify a plausible way to address the boundary con-

applied in the bulk. The standard homogenization techniquedition originally applied atz=h(x,t). Our approach is as

for bulk quantities such ag proceed by assuming that  follows. We allow the interface position to depend X¥nbut

= ¢(x,z,X,Z) depends on four independent variablésr  not onZ. In particular, we writez=h(x,X,t). We note, how-

ease of notation we suppress dependence on time in this lisever, that the terma andw appearing in the boundary con-

We shall outline the known steps and results for the homogdition have as their argumentgx,z,X,Z) andw(x,z,X,Z)

enization of Eq(122. to be evaluated &= h. If we “preaverage”u andw in theZ
We assume an expansion férof the form direction before inserting them into the boundary condition,
b= bo(X,2.X,Z) + €1 (X,Z,X,Z) ++ - . (124 W€ have
i ; dh dh
Equation(122) is expanded as E+<U>z5:<w>z: at z=h(x,X), (135
g 19 a¢ 19¢
X eax Ko(X.2) x Teax so that, the quantitieéu), and (w), depend only on the

variablesx, X, andt. The subscript, on average, indicates
+(i+ 19 )[ K.(X, Z)( d¢p E @”:O (125 Wit respect to what variable the average is taken. We shall
Iz az)| ¢ ' indicate this subscript only where necessary. Equatl®m)
will then be the starting point for the homogenization tech-

At O(e~?) we find Lpo=0 wherel is a linear operator
() o P niques to be applied in th¥ direction.

iven b
g y At O(e™ 1) the boundary condition is satisfied by taking
_d d d d ho=hg(x,t). At O(1) the boundary condition can be written
£=3x ( Keox | ™ 3z ( K°az>' (126 o5
This is solved by a functiogy= ¢¢(X,2) that is independent (9ho f9ho dhy
of the fast scaleX andZ. ot +(u o>z( x T ax =(Wo)z - (136
At O(e™ 1) we find that
Y K, ddy Ky debo If we average this irK we have
=X ax Tz ez

For use in the boundary condition we note that this equatlono7t
can also be expressed as

g Iy
e e 2 |+

12D oy dbo  dby\\ ohy
+((u o>z>x X <<KC(W+W)>ZW>X

=((Wo)z)x s (137

do Iy , , ,
Z|Kel 5 T 57170 where in the third term on the left-hand side we have ex-
(129  Pressed the form of the velocityuy)z in terms of ¢. Note
that in general the leading-order velocity components are

X

This is solved by a function

¢o [z
d> dd -
1= 02(X.2) 52+ 0,(X,.2) =, (129 Uo(X,2,X,2) ==~ Ko(X, Z)( x "X (138
where the coefficient®; and 6, satisfy the two cell prob- ¢o 3¢1
lems ! 2 Wo(X,2,X,Z) = —K(X, Z)( — T (139
_ K __ 9K We now note that the third term on the left-hand side of Eq.
LO== 5 LO=—77 (130 (137) vanishes:
At O(1) after some manipulations we find thag satis- ide Iy ohy
fies the general elliptic problem << (— —>> —>
i i ) Lax X ][, X
¢ P ¢
@ axzo 28 axaz ty (9220 =0, (13D __[n K, do 9o dp1 140
B 1ax ax X |, (140
where the coefficients are given by X
a= (K= (Kol V %), a2 _ < ) < {K (fwo . wm > 141
aX J X '
= — KV 6,-V 6,), (133 X 7/ x
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J dpo Iy 2\ 5249
= h1<—[K <—+— : (142 wop=+ ——) %2, 151
< az| "\ az " azll],) (woh=+|a== e, (151)
by Ipy\ %7t Inserting these results into the free surface boundary condi-
= < hl[Kc<¥+ E” > =0. (143  tion and noting thatyg=h, gives
o o (ay—p2) [ dhg
The first line follows from integration by parts noting that 5t ~ ~ 5 gx| 9 gx | (152

the boundary terngevaluated aX=0 andX=1) vanish by . ) . . . . .
periodicity in X, the second line by exchanging the order of A comparison of.th|s with fuII. numerical §|mulat|ons Wlth
differentiation with respect t and integration with respect Kc=Ke(X,2) jequires a numerical calculation of the coeffi-
to Z, the third line from Eq.(128), and the fourth line by Cient (@y—pB%)/y viathe cell problemg130). We leave this
integration inZ and applying periodicity irZ. for fL_Jture work whe_re the validity of the formal preaveraging
The full set of averaged leading-order equations are gpplled to thg moving interface can be qssessgd. T.h.|s effec-
tive permeability reduces to those previously identified for

d d vertical and horizontal layers.
(uoh=—a"20- 700, 144 y
V. A THIN ASPECT RATIO, SCALAR PDE FOR
dey deo SLUMPING GRAVITY CURRENTS
{woh= _EW_ Yoz (149 We remark that the homogenization of a moving inter-
face is a somewhat nebulous concept, and the homogeniza-
0= (7<<Uo>>+ a{(wo)) (146 tion of such nonlinear problems certainly can be supple-
X iz’ mented by rigorous mathematical analysis. To give a more

concrete picture for what is going on, in this section, we first

subject to the free surface boundary condition derive a decoupled, variable coefficient partial differential

0 aho equation governing the slumping interface under the

— Tluo)— - =(wo), atz=he(x,1), (147 asymptotic assumption of a thin, wide gravity current, with a

vertically layered background porous medium. We then, in

whereq, B, andy are given by Eqs(132—(134). turn, compute the leading-order homogenization, which is

found to agree with the homogenized dynamics of Sec. IV B.

F. Similarity scalings for the averaged dynamics: Finally, we conclude this section with a presentation of the
Two-dimensional periodicity explicit correction to the homogenized dynamics.

To make contact to the similarity analyses presented in N the limitH/R—0 the original governing equations are
Sec. Ill we now subject Eqg144—(147) to the limit H  9ven by
<R. The scaling choices here are exactly the same as in the dp
previous vertical and horizontal layer cases. We note that as U= ~Kc(X) ==, (153
in the case of purely vertical variation in the permeability

function one must keep in mind that the horizontal and ver- d¢

tical length scales are different when specifyikg. The O:_KC(X)E’ (154

presence of derivatives ap with respect to bothx and z

leads to an extra step required in the identification of the 0= ‘9_U+ ‘9_"" (155

averaged velocities. We expanth= 3+ 5¢3+- -+, where ax  dz’

6=HI/R, and again find thatz;g is independent of. It fol- oh oh

lows from the boundary conditiogp=h on z=h that ¢8 w(h)=—+u(h) —. (156)

=hg(x,t). At the next order we find from Eq$144) and at X

(145 that Upon noting that the second of these equations leads to the

960 o result thatd):(.j).(x,x,t) we find that ¢=h(x,X,t) from

(uo)=— a— =B, (149  boundary conditior{1).

We are interested in examining this problem using the
0 1 multiscale method and averaging over the fast variations in

0=— (7;%_ y&i’o_ (149 to get a leading-order effective problem but then also obtain-
28 Iz ing corrections to this leading-order behavior that show de-

tails of the fast variations. This method has been developed
and applied to a single PDE. Here we aim to understand how
o B? (9(1,8 such a method can be applied when there is a free boundary

(uo)=— ( a— _)W' (150 in the problem. The above thin limit offers a convenient set-
4 ting in which to examine this issue as the system in this case

It follows from the continuity equation that the vertical ve- can be reduced to a single PDE for the interface position

locity is given by h(x,X,t). This equation is given by

We can solve these two equations to find
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dh 9 ahz dhy (?hl aho Bt
x| KeX )h X (157 ho( X 9X Ko(X) (169

and is subject to the condition#h/dx=0 atx=0 andh  whereC(x,t) is a function to be determined. We can deter-
=0 atx=R. As noted earlier, the evolution of the contact mine¢(x,t) by averaging Eq(165) to obtain
line positionR is determined by examining E¢L57) and the

conditipn h=0 at the_ contact line. That is, c_omputing the h <‘9h >=—(h Y2 KD, (166)
dynamics ofh according to Eq(157) will effectively deter-
mine the dynamics oR by applyingh=0 at x=R. Our hile th lution forh. in Ed. (162 qi
focus, then, will be on the dynamics bf while the solution forhy in Eq. (162) gives
We expand Eq(157) using multiscale methods and ob- oh;\  #%hg x[ K-t
tain atO(e ?) that <(9_x>: e fo <K*1)_1 dX) +b,. (167

0= 2]k xong e 158
= 5x | Ko 75 (158
which indicates thahy=hg(x,t). At O(e™ 1) we find that
d [ dh, dhg d dhg
0= —| Kc(X) ho +h1 X c(X)ho
axX|
i X)h Mo 159
+ x| KeXOho— 2 (159
It follows from this equation that
Ko(X)hy| i 160
(X)ho| =+ ax =a(xt), (160

where, upon averaging and usihg(X=0)=h;(X=1), we
find that the functiora(x,t) is given by

14, g
a(x,t)=(K; 1 lhOW. (161)
It also follows that
(x,X,t)= &ho 71 1|dX+b(x,t), (162
hy(X, - X
o [(Kch)
whereb(x,t) is a function to be determined.
At O(1),
dhg 4 il h dhy h dhy h o?ho
Tt~ 7% KO oz + g+ hoe
X c(X)(ho hl ”
J dhg
Tox Ke(X) ho 8 +hy— X
dhg
+ o KeXOho— 2 (163

Upon averaging this equation we find that the leading-order

interface shapég(x,t) satisfies the equation

ah d

Do (ke 10 g e
at ¢ X

Oox |

(164

This equation can be compared to E40), where we note
that here(K_ )~ * replaces the constakt, in (40). We can

also integrate Eq(163) to obtain

These two results together give an expressioncfor

( dhg]  ahg | X
1 —
TX (K Y= —— (X) oax o \K/
(168
At O(e),
ol [ dha L ohe h1 o
Tt ax | KX °ax+ Tox 29X ¥ aX

P <ol ah, A ah, o dh
T ox | KeX) Oax+ Tox 29X
ol p e dhy o
T ox | Ko o= Fha—o=+hao
P A oh, i ohg
+ 2| K o= +hy— 2 (169

Upon averaging this equation, using E465), and period-
icity of the solutions, we find that
i hy)= 7 170
Sl =—. (170
This equation can be written in terms of the unknown func-

tion b(x,t) as

J 3%(bhg)

B ke
ENG

(171

We note that this equation fdris the equation fohg linear-
ized abouthy, so that we can write

h(x,X,t)=ho(x,t) + eh{P(x, X, 1), (172
Whereﬁo(x,t) =hg(X,t) + eb(x,t) satisfies
dhe L9 aﬁo
Tt Ke D) T Mok ar3
and h(p) is given from Eq.(162 by
ohy (X K1
hP)=—2 S _—1/dX. (174
(K ™)

We note that the correction given in E(.74) depends
upon the homogenized solutiohg(x,t), as well as the ex-
plicit structure of the underlying porous media. A compari-
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rf : : ' : FIG. 1. Approach(A): Maximum of h(x,t) versus

time, normalized by the similarity solution witK,
=0.5 and using the effective permeabilitK?
=0.866 025 in the similarity solution.
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son with the general aspect ratio correction fowill be In approach(A) we solve Eq(175 and attempt to sim-
explored in a subsequent work devoted to the full two-plify the handling of the contact line condition. Rather than
dimensional analysis and simulations. imposing directly the contact line conditions we take an ini-

tial profile that is a tight Gaussian:

VI. COMPUTATIONAL SIMULATIONS h(X,O)=Boe_<X_L/2)2/“°, (176)

A. Numerical approximation approaches . . . .
applied over the entire computational domain of length

In the previous three sections, we explored the theoretiThe contact line conditions are then effectively replaced by a
cal averaging of the evolving gravity current under the asyegion of small but nonzero values bfextending to the end
sumption of rapidly varying, vertically and/or horizontally, of the computational domain. Furthermore, we do not en-
layered porous media. In the case of vertically layered meforce symmetry. Unless otherwise noted, we take20, the
dia, we derived, in addition, explicit corrections valid for amplitudeB,=10, and the widthay=0.75. The permeabil-
thin aspect ratios. Here we present computational simuldty function is given byK.(x/€)=1+K,sin 2mx/e corre-
tions, which demonstrate three points made in this artiClesponding to Vertica”y oriented |ayers_ Unless otherwise
applied to the special case of the thin aspect ratio variabl@oted, we utilize the value of=0.5, which corresponds to
coefficient dynamics. First, we document that from a generaloughly 40 oscillations over the spatial domain. Further, for
non-self-similar initial condition, the self-similar scaling the initial data considered, the initial data spans roughly
emerges in finite time for the case of a variable coefficientight periods of the permeability field. Since this is a one-
permeability through normalization by the similarity solution dimensional prob]em we use an exp”cit time_stepping
employing an effective, homogenized permeability. Secondscheme with an extremely small time step to compute the
we further document that the leading-order averaging theor¥olution. Unless otherwise noted, all simulations for ap-
emerges at finite time, and finite(wavelength here through  proach (A) are run until timet=5.0 using 1.X 10’ time
numerical comparison of the front profiles between the fullsteps, and a uniform spatial mesh with 2400 spatial nodes.
solution with variable coefficient permeability and that of the By this output time, the gravity current is very well defined
homogenized dynamics. Last, we explicitly show that theand has not reached the end of the computational domain.

theoretical corrections to the leading-order homogenized dy-  |n approachB) we impose directly the boundary condi-
namics are accurate as regards the simulations at both finitgyns (6) and (7). The contact line condition,

time, and fixed, finitee in the interior, away from the contact

line region. d—R=u(R =K (R/e)@ 177
We consider the numerical simulation of the following dt ’ ¢ X X:R’

partial differential equation:
dh Jd
ot ox

is also directly enforced. Consistent with the imposed sym-
, (175 metry, we choose the even functiorK (x/e)=1
+Kgcos(2mx/e) for the permeability, wherd, and e are
n given constants. The initial conditions atgx,0)=Ay(1
—x?) andR(0)=1, whereA,, is a given constant. We solve
this system numerically using a finite difference approach
The variablez here is scaled with respect to the thin geom_Wi'[h second-order accurate central differencing in space and

etry and so represents a special case of the two—dimension%lIbaCkVVard Euler implicit time stepping routine. The details

periodicity described earlier. We examine two special case@'® givenin Appendix B.
of variability in one dimension by exploring the solution of
this equation for cases with vertical layers and with horizon-
tal layers. We shall implement two distinct numerical ap- In Fig. 1, using approackA), we document the rapid
proaches: one is an explicit method that avoids direct applieconvergence to the similarity scaling given(4¥) by taking
cation of contact line boundary conditions and the second ithe maximum of the computed fiel{x,t) and normalizing
an implicit method that incorporates the contact line boundby the similarity scaling given in Ed44). In this simulation,
ary conditions. Below we outline these methods and resultthe variable coefficient permeability has amplituidg= 3.

of the calculations. The effective permeability, in this geometry given by the

é)hJ'hK /e, zl €)d
19_Xo (Xle,zle)dz

which allows a general hydraulic conductivity functio
K:(X/€,2/ €). This equation simplifies depending on the spe-
cific form for K. and is not an integrodifferential equation.

B. Vertically layered case

Downloaded 12 Jan 2005 to 129.6.88.39. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 15, No. 10, October 2003 The averaging of gravity currents in porous media 2823

h(x)

FIG. 2. ApproachA): A comparison between the spa-
tial profiles at timet=5, between the simulated com-
plete solution, and simulated homogenized solution,
with Ko=0.5, andK} =0.866 025

harmonic mean, i&g =0.866 025. Observe that the conver- tions in the unaveraged dynamicshis task is automatic.
gence to unity is very rapid, indicating that the similarity Define E(x,t) =e(x,t)—h;(x,t). The field E(x,t) denotes
scaling is reached quickly, and that the system, at least a#e difference between the theoretical prediction and the full
regards the maximum, is homogenizing quickly as well.  simulation of the unaveraged dynamics. In Fig. 4, we docu-
In Fig. 2, we show a comparison between the spatiaent the success of the homogenization approach in this
profiles of the height field at the final time 5. Observe,  simple case of a scalar nonlinear variable coefficient PDE by
the unaveraged solution oscillates rapiigth a wavelength  showing the fieldE(x,t) at time t="5. Observe that essen-
set by the intrinsic period of the underlying permeabjlity (ia|ly across the entire spatial domain, the theoretical predic-
about the simulated effective dynamics. Clearly, the homoggiop, s extremely good, with the error possibly accumulating
enized dynamics are doing an excellent job in capturing the the eqge of the gravity current. This error is qualitatively

dynamics. similar to that computed using approa¢B), see below,

In F|gs: 3 and 4, we d_ocument the remar.kable SUCCESS Qipere the contact line is directly incorporated in the calcu-
the correction to the leading-order homogenized dynamics in

capturing the true behavior given by the full unaverage ation.
simulation. Definee(x,t) =h(x,t) — ho(x,t), whereho(x,t) Calculations using approa¢B) are shown in Figs. 5-8.

is the homogenized solution. Figure 3 shows the spatial prol-n Fig. Xa we show a comparison of the full numerical

file of the fielde(x,t) at timet=5. Observe there is a period- SClUtionh(x,t) and two approximate solutions of the form
scale oscillation with amplitude growing roughly linearly No* €h1. One approximate solution calculateg numeri-
from the center, with an abrupt drop off at the edge of thec@lly using Eq.(175 with qu \ianabIeKc replaced by the
current. The linear envelope can be understood by noting th&onstant effective valugk; %)~ The derivative oty ap-
h;~dhy/dx [see Eq.(174)] and thath, is approximately —Pearing in the analytical formula fdmn, [see Eq.(174)] is
parabolic. calculated using thi, solution. This is the approximation
To make a direct comparison with the theoretical predic-based on the leading-order numerical solution. The other ap-
tion of Sec. IVB, we numerically process the correctionproximate solution uses the similarity solution toy, again
given in Eq.(174), since it involves the nonlinear, homog- with the value ofK taken to be the constant effective value.
enized dynamics. However, since we have already computetihe derivativeoh,/9x in the formula forh, is obtained from
the homogenized solutiofat a greatly diminished cost as the similarity solution. This is the approximation based on
compared with that necessary to resolve the rapid oscillathe similarity solution. As can be seen from this figure, the

0.02 - IO SRS D—— ........... SR -
. 0.01 —_ : : : :
X . 2
s 0+ - FHHAHAH A A A : FIG. 3. ApproachA): Difference between the full un-
1 g _ ] ! : i ; averaged simulation and the homogenized simulation at
002 ........ ......... ........ ........ O .......... ......... ....... ..........
¥
0 2 4 6 8 10 12 14 16 18 20
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o3 0 FIG. 4. Approach(A): The simulated error field,
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approximate solutions appear to agree well with the full nu-dashed line shows that based on the similarity solution. This
merical solution. error indicates very good agreement between numerical and
In Fig. 5b) we show the difference between the full approximate solutions in the interior region. The error is bet-
numerical solution and the leading-orddr,, e(x,t) ter in the interior, in general, in all simulations using the
=h(x,t) —hg(x,t), based on the leading-order numerical so-explicit approach(A) and the implicit approactiB). This
lution (solid line) and the similarity solutioridashed ling trend remains with increased spatial and temporal resolution.
These curves should approximate the known correction for- In Fig. 6 we quantify the dependence of the errors
mula, shown in Fig. &). Note that Fig. &) shows the ana- e(x,t)=h(x,t)—hg(x,t) and E(x,t)=h(x,t)—hg(x,t)
lytical correction calculated with both the leading-order nu-—eh;(x,t) on e. Since there is a computational trade-off
merical solution and the similarity solution, indicating very between the end point in timefor the calculation and the
good agreement between the two. spatial resolution used, we have chosen to make this error
The difference between the curves in Figo)sand those assessment at a relatively early titve0.1 in order to make
in Fig. 5c) is E(x,t)=h(x,t) —hg(x,t) —eh,(x,t) and is feasible computations with smaller valueseand more spa-
shown in Fig. %d). Again, the solid curve shows the differ- tial resolution. Consequently, we use the leading-order nu-
ence based on the leading-order numerical solution and thmerically computed solution rather than the similarity solu-

profiles
2 — 0.03 .
{ l‘ '
002' ! " | "
1.5 t
= 001}
X
e o
5 4 T 0
2 =
< %
£ -0.01
0.5} ]
-0.02}
- -0.03 —
0o 2 4 6 8 0 2 4 6 8
(a) X (b) X
correction formula
0.03 0.025 .
|
—  0.02f |
0.02 =
ﬂ ﬂ X 0015}
L
0.01 : oot}
e Z
0 =L 0.005
= of
-0.01 =
' U u -0.005
- -0.01 -
0'020 2 4 6 8 0 2 4 6 8
(c) X (d) X

FIG. 5. ApproachB): This figure showsa) the solution profiles(b) the differencee(x,t) = h(x,t) —hgy(x,t), (c) the correction formulah,(x,t), and(d) the
differenceE(x,t) =h(x,t) —hg(x,t) — eh;(X,t). See the text for an explanation of the different curves shown. The numerical solutions shown here have been
computed usingit=10 000,nx=1000,K = 0.6, e=0.375, andA,,= 10. Note thatK* =(K_*)"1=0.8 in this case.
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100_ M

+ - - '8 FIG. 6. ‘Approach(B): This figure
- -7 shows different measures of error as
» + + -7 | reduced from error fields similar to
10°F .-G ] those shown in Figs. (B), 5(d). This
[ - set of error data has been calculated at
[ & --~ an early timet=0.1. The overall error
o 1 fields e(x,t) and E(x,t) both decay
Ll linearly with e. However, the interior
e error E(x,t) measured on the intervals
. E x<R/4 andx<R/8 suggest quadratic
3 e ] decay ine in the interior. The quantity
[ - 1 max(E(x,t)[) measured over allx
g PRs ] really measures the error near the con-
] tact line as that is where the maximum
P 1 error occurs and indicates nonuniform
o convergence of the expansiohg
107} P b + €h,. The numerical solutions shown
; overall (max(je|, all x)  |] here have been computed usimg
overall (max(|E[), all x) ] =500, nx=2000, K,=0.6, and A

!nterfor (max(|EJ),x<R/4) =10 with different values ok, as in-
interior (max(|E|),x<R/8) dicated

- - linear ] '
- — - quadratic

S
\

error measure
—
o
T
\
=\

\
x 00+

10 it

tion in the comparison. We show several measures of thesally measuring the error at the contact line, which we have
error. In this figure, the two drawn lines indicate linear andalready noted is larger than in the interior. Two other mea-
quadratic dependence anWe first show the maximum of sures of the errofE(x,t)| are shown for two interior regions
|e(x,t)| over the spatial domain. This error decreases apf(x<R/4) and k<R/8)], showing that this error is approxi-
proximately linearly ine, indicating that the leading-order mately quadratic ire, or at leasb(e€). The observed nonuni-
solution is uniformly valid over the whole domain. The formity of the errorE(x,t)=h—hy— eh; indicates that the
maximum of |[E(x,t)| over the whole domain indicates a correction formulah; is not uniformly valid. It is clear that
trend that is linear ire also. However, we note that this is the error is spatially dependent and is consistently larger near

profiles
T
I
06 A
o5t .
! FIG. 7. Approach(B): The full solu-
E04 ': 7 tion profile (solid curvé and leading-
2 0.3 i order solution profile(dashed curve
| plotted against the background perme-
0.2, B ability in the vertical layer case. The
| vertical lines in the upper plot corre-
0.1 K 7 spond to where the permeability, as
ol shown in the lower plot, takes on its
4.6 6.4 mean value. In regions of higher than
mean permeability, the interface pro-
file has a smaller slope than it does in
2 : i : : : : . i regions of lower than mean permeabil-

ity. Note that the bulges in the inter-
face profile are localized around re-
151 B gions where the permeability is
decreasing most rapidly. The full nu-
merical solution in this figure hast
X 1 b =10000,nx=1000,K,=0.6, €=0.5,
andA,=10. Note thatk* =(K_)~*
=0.8 in this case.

4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4
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profiles

FIG. 8. Approach(B): The full solu-
tion profile (solid curve and leading-
order solution profile(dashed curve

i plotted against the background perme-
ability in the horizontal layer case. The
horizontal lines in the left plot corre-
spond to where the permeability, as
E shown in the right plot, takes on its
mean value 1. This figure hast
=5000, nx=500, K,=0.6, €=0.5,
and A;=10. Note that K} =(K.)
=1.0 in this case.

height

the contact line. The clear quadratic scaling of the error irslender aspect ratio limit using approa@). We solve Eg.

the interior gives strong evidence that the correction formu{175 with K (z/€)=1+K,cos(27zZ/€), wherez here is in-

las both are asymptotically correct, and achieve in capturingerpreted as scaled with respect to the thin geometry. Note

the spatial imprint imparted to the evolving interface by thethat in this case the predictions from Sec. IV D suggest that

medium. At the contact line, however, the corrections maythe leading-order behavior can be obtained by replacing vari-

not be asymptotically valid. Ultimately determining if the ableK, with (K.). For the above choice &€ (z/€) we find

corrections are asymptotic at the contact line will requirethat (K.)=1. Figure 8 shows on the left the numerically

further simulations, and potentially different local expansioncalculated solution withiK,=0.6 and e=0.5 (solid curve

techniques. It is noteworthy that the corrections are performand the numerically calculated solution with a constant ef-

ing correct in the interior for the interface, which is a bound-fective permeability(K.)=1 (dashed curve This leading-

ary in its own right. order solution is clearly capturing the bulk motion of the
Figure 7 shows a close-up of the profiles wigkr0.5  fluid. Indicated on the right of Fig. 8 is the permeability

with all other parameters as shown in Fig. 5. The upper plovariation used in the full simulation. We can see that in re-

shows the numerically calculated solution with variable per-gions of lower than mean permeability, the interface lags

meability (solid curvg and the numerically calculated solu- behind the homogenized solution and in regions of higher

tion with an effective permeability dﬂ<c_1)‘1=0.8(dashed than mean permeability the interface precedes the homog-

curve. Again, it is clear that the calculation with effective enized profile. Bulges of the interface are in phase with the

permeability agrees well with the bulk motion of the gravity permeability variations.

current in the variable permeability case. The background We point out here that based on the leading-order simi-

permeability is shown in the lower figutéhe vertical dashed larity solutions for the vertical and horizontal layer cases we

lines in the upper plot separate regions of high and low perean compare the spreading rates of these two situations using

meabilities. We note that the bulges in the fluid profile ap- Eqg. (54). If we represent the radius for vertically oriented

pear to be approximately 90° out of phase with the maximdayers byR,, and that for horizontally oriented layers By, ,

in the permeability function. This shape is consistent with thewe find that

analytical formula derived for the correctidén given by Eg.

(174) and as shown in Fig. 5. The flatness of the profile in Ry <KC‘1>—1

the region of high permeability indicates the fluid’'s greater Ry (K (178

mobility in that region.

This ratio is less than one, which implies that gravity cur-
rents flowing in horizontally layered media spread faster than

To test the leading-order predictions for horizontal lay-the same gravity current flowing in a vertically layered me-
ers, we numerically simulate a case Wikh=K.(z/€) in the  dia.

C. Horizontally layered case
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VII. CONCLUSIONS and Sciences of the College of Arts and Sciences at George
In this article, we have explored the behavior of a slump-'vIason University. R.M.M. is partially supported by an Na-

ing gravity current in the presence of a variable permeabilit)}lgoggl ;%iggi;o_:fg dat:f)ﬁ\LSF) fCF? r'\e/le'(AAwa;d, CG'IEEII\;I]t ’:0'
porous medium. We have identified the similarity scalings i - [he efiorts of R.NLM. an 1.V, have

and solutions for a constant permeability medium, and interpeen supported in part by Grant No. P42 ES05948 from the

: : : o National Institute of Environmental Health Sciences and
twined these tools with the variable permeability case .
through the method of homogenized averaging, specificaIINSF Grant No. DMS-0112069. The computational efforts of

in cases with either vertically or horizontally layered perme%;t'\g'rwere supported by the North Carolina Supercomputer

abilities. For the case of two-dimensional permeability, using
a more formal approach, we derive effective medium dynam-
ics, and show how the slender limit similarity dynamics are
obtained up to a coefficient, which must be obtained in genAPPENDIX A: ALTERNATE INTERFACE
eral through the numerical solution of an auxiliary cell prob-PARAMETRIZATION
lem. Under the assumption that the gravity current is thin, we ) _
identified that the height itself completely decouples yielding N the case of a horizontally layered medium wih
a scalar, variable coefficient nonlinear PDE governing the~ Kc(Z) andZ=2/¢, we examine a parametrization of the
moving interface. We analyzed this case in detail, both at thd1terface position in which it is identified by its horizontal
level of leading-order homogenization and with corrections©cation x=L(z,Z,t). This quantity may have explicit de-
for the case of vertical layers, and further documented th&€ndence on the fast variatife In terms of this parametri-
success of this averaging approach through computationzftion the free-surface boundary condition is
simulations in this simplified geometry. aL aL

Many issues require further study. Clearly, general po- —+w-—=u, atx=L(zZ,t). (A1)
rous media are not layered as such, but will have full topol-
ogy, and the study of the moving interface problem, in gen,

eral, will require at least the homogenization of a nonlayered ., < the point of symmetry£0), wheredl/dz is infi-

packgrqund. Itis expected tha_t the connegnon t9 the SIm'l"’“hite, it remains an instructive description for the present pur-
ity scalings through homogenized averaging will be a gen'poses. If we subject this equation to an expansionein
eral principle; though the calculation of the effective perme-Coupleol to the equations in the bulk as described in Sec.
abilities themselves is a nonexplicit task in the absence of &, ~ e find that at leading order ig, Lo=L(z,t) is inde-
layered structure. Moreover, identifying how the structure Ofpenéent of the fast variab and, furthermore,, thalt, sat-
the medium manifests itself upon the slumping gravity CUlisfins

rent surely will require the complete simulation of the fully

coupled and multidimensional system. The assumption of pe- Lo L,

riodicity should be ultimately relaxed as well if an efficient ~ —=+(Wo) ——=(Up), at x=Lo(z1), (A2)

pumping strategy is to be ultimately designed to handle gen-
eral porous media, and supplemented with a random permeyhere in this context-) indicatesf $dZ. The quantitieguo)
ability tensor. Homogenization methods may well work in and(w,) are given by Eqs(114) and(115).
these more complicated environments; however, a study of Under suitable conditions, EqA2) can be expressed
the averaging of the underlying elliptic operators is necespack in terms of a function interpreted as height rather than
sary. The averaging method for general topology for thenorizontal position. In particular, we assume that
complete systentoutside of the lubrication approximatibn =| ,(zt) defines a function that is invertible so that
is more formal than the averaging presented for layered sys=| (x,t) is its inverse function with respect to spatial vari-
tems. Future work will compare this methodology with com- gp|es. Herel_gl(x,t) is a height function that we later re-
plete simulations of the full porous media system. namehg(x,t).

The study presented here provides a first pass at assess- The relation Lgl[Lo(z,t),t]zz leads to the following

ing the relevant time scales for maintaining an elevated denwo expressions when taking partial derivatives with respect
sity profile in a porous media, and further documents thgg 7 andt:

success of the leading-order plus corrected homogenization

hile this parametrization may be problematic at locations

theory applied to this nonlinear problem, as regards both the aLgl dlg

gravity current scaling properties and spatial profile of the ox | oz =1, (A3)

moving interface. t t
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Lot oh (day x' \oh ., d[ . oh 57
ot gt T\ At agt))ax’ Stax | e ox | B7)
- m_——1+<Wo>(|—0'Z’t) ST (Uo)(Lozt),  (AS)
0 0 H
subject to
dX dx
. . dh
where we have indicated explicitly the arguments of the two 5(0,t’)=h(1,t’)=0, (B8)
averaged velocities. Whe#l, */9x is nonzero(which we
assume to be true away from the point_of symmetr)xat and the initial condition
=0), we can rearrange the terms in this equation, zise
=L, Y(x,t)=ho(x,t) andx=L(z,t) to obtain h(X,0)=An(1—x2). (B9)
dho dho Evaluating Eq(B7) atx’ =1 and enforcindi=0 there gives
—+ hg,t) —= ho,t A6 ! "
gt T (o) (o, B) 722 =(Wo) (X, o, D), (A6) the contact line condition
which is identical to Eq(113). dR Jh
E—— Kcalg . (B].O)
x'=1
APPENDIX B: IMPLICIT NUMERICAL METHOD This result indicates that EqB7) and h(R,t)=0 together

. . ) ) determine the motion of the contact line.
The governing equations are made dlmgnsmnless by  The above mapping is convenient because it fixes the
scaling lengths with the initial radiug,, hydraulic conduc-  computational domain in the horizontal te<&’<1 for all
i ik 10 ; : 0 0 : . .
tivity with K¢, and time withR,/K;, whereK is a refer-  {ime during the computation. However, one must also keep
ence value for the hydraulic conductivity. The dimensionlessn mind that since the background permeability variation is

equations to solve are fixed in physical space and since the gravity current is
spreading the horizontal length scale of the permeability

@: i KC(Xle)h@}, (B1) variation in the computational domainsx’<1 is actually

Jgt - ox X getting smaller in time. We need to calculate.=1

+Kgcos(2rRxX/e), where x=x"R(t) at each time step.
Therefore, with a fixed horizontal computational gridxh
one should have in mind the maximum valueRoh order to
gauge the resolution needed for a given permeability varia-
tion.

We discretize the evolution equation spatially using
second-order accurate central differencing witkk grid
where A, is a measure of the initial height of the fluid points in the horizontal direction. The spatial derivative ap-

mound that can be related to the initial volume. The contacP&aring in the evolution equation f&(t) is computed using
point R(t) evolves according to a one-sided second-order accurate first derivative formula.

The time stepping is done implicitly using a backward Euler

whereK =1+ K, cos(2mx/e). HereK, and e are parameters
associated with the permeability function. The evolution
equation is subject to the boundary conditidés and (7)
and the initial conditions

h(x,00=A4(1-x%), R(0)=1, (B2)

d d method. Here, the evolution equations forand R, which
gt - URD=—K(Rie) (B3)  take the form
x=R
We map the horizontal domainsOx<R(t) to the do- @:f(x’,h,hx, ey RRY), (B11)
main 0<x’<1 using the transformatior’ =a,(t)x andt’ ot
=t, where
dR ,
1 4t = RO =1Rhy0), (B12)
al(t) = % (B4)

are discretized in time as
It follows that the derivatives transform as

; ; —3hjti+4hit3-hi%=0, (B13)
ax WG B5) hi*loh—Atfi*1=0, for j=2,.nx—1,  (B14)
PR x' da;| @ hitl =0 (B15)
. - I D J=nXx 1
ot ot Hla ) dt Jax (B6) _ _ _
RT1-R—AtfL =0, (B16)
where da, /dt= —a3dR/dt. This leads to the transformed
evolution equation where
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i+1 i+1_ i+l

fi+1:ai+ld_K piti i+l hJ*1
T dx ] 2AX

i+1_ pNit+1y2

j+1_hj—1)

(h
+(afh2Ki*e
(2397 4AX?

i+1 i+1 i+1
hJ+1_2hJ +hj_1

i+1\2p it 1pitl
+(a; ")°Kj h;

Ax?
i
i ) + —
+xjﬂ$1aT4>J—§K;1——, (Bln
i+1 i+1 i+1
fiR+1:_K}_::'I;Xail_'.l3hj:nX_4hj:nX*l+hnX*2 (818)

2AX '

where xj’=(j—1)/(nx— 1), Ax=1/(nx—1), At=T/(nt
—1), andnt is the number of temporal points. Note that

- 27R x|

Kj"*=1+Koco§ —— |, (B19)
dK|'*t 27K, (27R7X/

rri sin| c . (B20)

i

Equations(B13)—(B16) represent the symmetry condition,

the evolution equation foln, the boundary conditioh(R,t)
=0, and the contact line conditiai310). Thesenx+1 ex-
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