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We explore the problem of a moving free surface in a water-saturated porous medium that has either
a homogeneous or a periodically heterogeneous permeability field. We identify scaling relations and
derive similarity solutions for the homogeneous, constant coefficient case in both a Cartesian and an
axisymmetric, radial coordinate system. We utilize these similarity scalings to identify half-height
slumping time scales as a rough guide for field groundwater cleanup strategies involving injected
brines. We derive averaged solutions using homogenization for a vertically periodic, a horizontally
periodic, and a two-dimensional periodic case—the solution of which requires solving a cell
problem. Using effective coefficients, we connect the first two of these homogenized solutions to the
similarity scaling solution derived for the homogeneous case. By simplifying to a thin limit,
retaining variations of the porous media in the horizontal direction, we derive a homogenization
solution in agreement with the general horizontally layered solution and an expression for the
leading-order correction. Finally, we implement two numerical solution approaches and show that
self-similar scaling and agreement with leading-order averaging emerge in finite time, and
demonstrate the accuracy and convergence rate of the leading order correction for both the interior
and the boundary of the domain. ©2003 American Institute of Physics.
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I. INTRODUCTION

Groundwater is an important resource, which is rel
upon by about half of the population of the U.S. as a sou
of drinking water. Over the past few decades, releases
contaminants that are immiscible with water into the shall
subsurface has occurred in many instances, leading to
taminated conditions that pose a threat to human and
logical health. Due to capillary forces, such contaminants
trapped in the pore space of the porous media existing in
subsurface, leading to long-term sources of contaminat
While much is known about such multiphase systems, m
open questions still remain.1

Remediation of porous medium systems contamina
by nonaqueous phase liquids that are more dense than w
~DNAPLs! are a particularly difficult class of problem
which motivate this investigation. Recently, Miller and c
workers have advanced a set of remediation strategies
rely upon the use of dense brine solutions to mobilize
contain DNAPL contaminants in porous medium systems2,3

Since the brines used in these remediation technologies
significantly more dense than water and relatively expens
the dynamics of brine behavior in porous medium syste

a!Telephone: ~703! 993-1482; fax: ~703! 993-1491. Electronic mail:
danders1@gmu.edu

b!Electronic mail: rmm@amath.unc.edu
c!Electronic mail: caseyImiller@unc.edu
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are of interest for the economical assessment and desig
such technologies. The complexities of the physics
density-dependent multiphase flow in heterogeneous po
medium systems makes this class of problem challenging
a first step in our efforts to analyze this problem, we focus
the dynamics of a gravity-driven redistribution of a sing
dense fluid in heterogeneous porous medium.

Much is known about gravity-driven motion of a flui
mass in a uniform porous medium. Theoretical descriptio
of the slumping of a groundwater mound and the histori
development can be found in Bear4 and Barenblatt.5 Classi-
cal similarity solutions satisfying the Boussinesq equat
~porous medium equation! have been a central part of th
development. Extensions of these solutions have, for
ample, accounted for capillary effects in which some fluid
left behind in the draining region and not all pore space
occupied in the filling region~see Kochinaet al.6 and
Barenblatt5!. Properties of similarity solutions of the class
cal porous medium equation and its close relatives have b
carefully documented~e.g., Witelski and Bernoff7!. The util-
ity of these solutions in characterizing the long-tim
asymptotic behavior of fluid motion in spatially uniform po
rous media is well known. In the present work, we are int
ested in extending the utility of these free-boundary probl
solutions using homogenization techniques to situations
0 © 2003 American Institute of Physics
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which a spatially periodic background permeability variati
is present.

There has been some recent work in which the hom
enization of problems involving interfaces has been
dressed. Friedman, Hu, and Liu8 used homogenization theor
for the Poisson equation on a domain with a rapidly oscil
ing structure along one of its boundaries and developed e
formulas for these approximations. Friedman and Hu9 and
Friedman10 applied similar analyses to a free-boundary pro
lem for a chemical vapor deposition model that incorpora
a rapidly varying periodic structure on the growing substra
They described the existence and uniqueness propertie
the homogenization approach and gave error estimates a
ciated with the homogenized boundary.

Here we address the mathematical assessment of a
aged time scales for the slumping of a gravity current
porous media, and the study of the ensuing interface sh
reflecting the underlying permeability properties. We will f
cus upon situations in which a fixed volume, elevated, loc
ized brine layer is allowed to spread under the action
gravity in an isotropic, nonuniform permeability porous m
dium on top of an impermeable bottom layer.

The paper is organized as follows. In Sec. II, we ov
view the equations of motion for such a moving interfa
problem. In Sec. III, we review known similarity solution
for this system for the simplest case of a constant permea
ity tensor,4,5 and use these solutions to predict associa
half-height slumping time scales for the gravity current.
Sec. IV, we apply homogenization methods to calculate
effective nonlinear moving interface dynamics, first for e
plicit cases with variable coefficient permeability corr
sponding to horizontally and vertically layered media, th
turning to the case of a doubly periodic permeability var
tion. In Sec. V, under the assumption of a thin gravity c
rent, we derive and analyze using homogenized averagi
scalar nonlinear variable coefficient partial differential equ
tion for this limit. We homogenize this equation and compu
the leading-order and the corrected height fields. In Sec.
through a direct comparison between computational sim
tions of this equation and the homogenized dynamics,
provide compelling evidence for the success of the averag
approach for this nonlinear moving boundary problem.

II. THE NONLINEAR INTERFACE PROBLEM

The problem that motivates this study involves thr
fluid phases: a heterogeneous porous medium, and fluid c
position effects that determine the density of the fluid and
interfacial tension between binary groupings of phases.
physics of this situation are complicated and involve iss
such as capillary trapping and hysteretic constitut
relations.1 The modeling of such a system in a physica
realistic way requires a compositional, multiphase mode
which the composition of each fluid phase~water, DNAPL,
and gas! and the volumetric phase distributions are evolv
in time in a heterogeneous porous medium. In this work,
wish to analyze a simpler problem as a first step to g
general guidance to assess the behavior of such system
estimate the relative time scale for brine slumping. As su
Downloaded 12 Jan 2005 to 129.6.88.39. Redistribution subject to AIP 
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we will ignore the multiphase and compositional nature
the motivating problem and focus on an analysis of the
namics of a single-phase free-surface problem for a sin
fluid in a heterogeneous porous medium.

The situation we consider here is that of an initial vo
ume of fluid in a porous media that is released and slum
under the force of gravity. In this context we refer to th
volume as the volume of bulk porous medium that can
saturated by the volume of water in the initial region, assu
ing a constant porosity and field capacity. Experimentally,
example, this could represent crudely the flow of a core
liquid initially held in a vertical cylinder and then release
into a porous media drained to field capacity. Alternative
the fluid could represent the elevated brine layer injected
a water-saturated porous media, which does not quickly
with the water, but forms an elevated slumping gravity c
rent. Of course, the fully coupled water–brine system
more complex, requiring at the very least an evolving dens
variable, we focus upon the simpler single-fluid case for e
of exposition.

Flow in porous media is typically characterized by slo
pressure-driven motion. In particular, for incompressib
flow in a porous media without mass sources or sinks
have

u52K~x,z!@“p1rgk̂#, ~1!

“"u50, ~2!

where u is the fluid velocity,p is the pressure,K5k/m,
wherek is the permeability andm is the viscosity,r is the
density of the fluid,g is gravity, andk̂ is a unit vector in the
vertical direction. The quantityKc[krg/m is called the hy-
draulic conductivity,4 and we are interested in cases whe
this has a prescribed spatial variation. While Eqs.~1! and~2!
are linear, the problem under consideration here is nonlin
due to the moving interface.

The interface defines the shape of the fluid mass a
flows through the medium. Mass conservation requires
u"n̂5UI "n̂ at the interface, whereUI is the velocity of the
interface andn̂ is a unit normal vector. In the case of intere
here, we represent the interface position byz5h(x,t), where
we assume symmetry aboutx50 and represent the velocit
of the interface asUI5htk̂. Then, with the fluid velocity
defined with componentsu5(u,w), this kinematic condition
is written as

]h

]t
1u

]h

]x
5w, at z5h. ~3!

Additional conditions on the field variables are

w50, at z50, ~4!

p5pA , at z5h, ~5!

wherepA is the atmospheric pressure. The first of these r
resents an impermeable layer atz50 and the second state
that the pressure at the free surface is atmospheric pres
~we can setpA50 without a loss of generality!. The free
surface condition~3! also requires boundary conditions, an
these are given by
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2812 Phys. Fluids, Vol. 15, No. 10, October 2003 Anderson, McLaughlin, and Miller
]h

]x
50, at x50, ~6!

h50, at x5R~ t !, ~7!

whereR is the radial position of the contact line. The first
these is a symmetry condition and the second is the cond
of contact. A final condition states that the contact line po
tion moves with the horizontal fluid velocity at the conta
line boundary,

dR

dt
5u~R,t !, at x5R~ t !. ~8!

This condition can be derived from Eq.~3! with the use of
conditions~4! and ~7! and therefore is in some sense redu
dant. It does offer a clear physical picture of the motion
the contact line, however, and as a reduced form of Eq.~3! at
the contact line it will appear again in one of our numeric
approaches implemented in Sec. VI. The bulk of the anal
presented here will focus on Eqs.~1!–~3!. A further discus-
sion of the conditions~6!–~8! as well as alternative condi
tions useful for a numerical solution is presented in Secs
and VI.

For initial conditions, we assume a given profil
h(x,0)5h0(x), and we assume that initially that the flu
itself possesses no motion. Note that these equations fo
coupled system, in which the boundary is coupled to the fi
variables through the moving interface condition. In Sec.
we identify a slender asymptotic limit in which the interfa
position h may be decoupled to yield a scalar, nonline
variable-coefficient partial differential equation. In gener
the above system requires numerical inversion to handle
variable coefficient nature of the problem. However, in t
next section, we present scaling arguments that conne
known similarity solutions and to the slender geometry in
case of a constant-coefficient permeability.

The above governing equations can be recast in term
the field variablef5p/(rg)1z by combining Eqs.~1! and
~2! to obtain a variable coefficient elliptic problem,

“"@Kc~x,z!“f#50, ~9!

subject to boundary conditions

]f

]z
50, at z50, ~10!

f5h~x,t !, at z5h~x,t !. ~11!

The kinematic boundary condition may also be recast
terms of the variablef as

]h

]t
5

]

]x E0

h

Kc

]f

]x
dz, ~12!

which is subject to the same boundary conditions as gi
above in Eqs.~6!–~8!.

III. SCALING ARGUMENTS FOR A GRAVITY
CURRENT IN A POROUS MEDIA

In this section we outline scaling arguments used
identify approximately how the fluid in the porous mediu
Downloaded 12 Jan 2005 to 129.6.88.39. Redistribution subject to AIP 
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flows under the force of gravity~as governed by the abov
equations!. Here we assume that the permeability coefficie
is constant. These scaling arguments lead to the identifica
of simple formulas for the spatial evolution of the fluid ma
as well as similarity variables for which an exact~self-
similar! solution exists. This self-similar form is wel
known.4,5 Similar analyses have been performed
Huppert11 for viscous gravity currents, Huppert and Woods12

for gravity currents in porous layers, and by Actonet al.13

for viscous gravity currents over porous media. Our purp
for outlining the results here is for a later comparison and
of them in the context of porous media flows with nonun
form permeability.

In component form, the two-dimensional equations a

u52K
]p

]x
, ~13!

w52KS ]p

]z
1rgD , ~14!

]u

]x
1

]w

]z
50, ~15!

and

]h

]t
1u

]h

]x
5w, at z5h. ~16!

We let H andR represent vertical and horizontal leng
scales associated with the shape of the fluid mass anT
represent the time scale. The pressure and two velocity sc
P, U, and W will be determined in terms of the physica
parameters and the space and time scales. Additionally
shall identify howH andR scale with time.

In determining the balances that follow, we shall assu
that in the continuity equation~15! both terms balance an
that in the kinematic condition~16! all terms balance. Two
different limits that we consider will arise from different ba
ances that are possible with respect to the vertical compo
of Darcy’s equation~14!.

A balance of terms in the continuity equation~15! and
also in the kinematic condition~16! implies that

W;
H

R
U,

H

T
;

UH

R
;W. ~17!

It follows from this that

U;
R

T
, W;

H

T
. ~18!

The horizontal component of Darcy’s equation~13! implies
that

U;
KP

R
. ~19!

Balances~18! and ~19! then give the pressure scale as

P;
R2

KT
. ~20!
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2813Phys. Fluids, Vol. 15, No. 10, October 2003 The averaging of gravity currents in porous media
The terms in the vertical component of Darcy’s equat
~14! have the associated scalesUH/R, KP/H, and Krg,
respectively. In light of the above results, these are

HKP

R2
,

KP

H
, Krg. ~21!

In what follows we consider two limits with respect to th
length scalesH andR, which lead to two different possible
balances with respect to this equation.

If H!R, then the terms in~21! suggest that only the
second two balance~the first term is smaller by a factor o
H2/R2), which represents a physical balance between
vertical pressure gradient and gravity; a hydrostatic balan
In this case, we obtain

P;rgH. ~22!

A comparison of~20! and ~22! gives

R2

KT
;rgH. ~23!

Finally, we relate the length scalesH andR through a fixed
volume ~per unit length!

VL;RH, ~24!

to arrive at a scaling dynamics forR given by

R;~rgKVLT!1/3. ~25!

This is the scaling for which the liquid blob spreads in t
horizontal direction whenH!R. We can determine the sca
ing for H, usingVL;RH,

H;
VL

~rgKVLT!1/3
. ~26!

The notion of a time scale for problems of this nature is a
of an elusive concept. However, since we have assumed
H!R, comparing balances~25! and ~26! suggests a time
scale upon which the balance is appropriate, namely

T@
VL

1/2

rgK
. ~27!

One interpretation of this is as a relaxation time scale to
thin (H!R) configuration.

An alternative balance is possible at earlier times if
horizontal scales and vertical scales balance. That is, iH
;R, then ~21! suggests a pressure scale in which all th
terms balance given by

P;rgR, ~28!

which in conjunction with balance~20! gives

R;rgKT. ~29!

The volume constraintVL;HR suggests that

H;
VL

rgKT
. ~30!
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Since we have assumed thatH;R, balances~29! and ~30!
suggest a time scale on which the balance is appropr
namely

T;
VL

1/2

rgK
. ~31!

A. Similarity solution based on scaling for H™R

We now focus in more detail on the limitH!R de-
scribed in the previous section. In this limit, the leadin
order equations are

u52K
]p

]x
, ~32!

052KS ]p

]z
1rgD , ~33!

]u

]x
1

]w

]z
50, ~34!

and

]h

]t
1u

]h

]x
5w, on z5h~x,t !. ~35!

Recalling the dimensional form for the vertical component
Darcy’s law given by~14! and the scaling for each term
given by ~21!, we note that in the limit whereH!R the
left-hand side of~14! can be neglected.

The constant volume per unit lengthVL is

VL52E
0

R~ t !
h~x,t !dx, ~36!

where R(t) is the location of the contact line wher
h@R(t),t#50. In the following analysis we derive an evolu
tion equation for the shapeh(x,t) of the liquid volume, and
then apply the scalings of the previous section to formula
similarity solution representation for the shape.

Equation~33! implies that the pressure is hydrostatic
leading order. Withp(z5h)50 this implies

p5rg@h~x,t !2z#. ~37!

It follows that the horizontal velocity is given by

u52Kc

]h

]x
. ~38!

The continuity equation then gives the vertical velocity

w5KcF ]2h

]x2Gz. ~39!

Substituting the results foru andw into the kinematic bound-
ary condition ~35! leads to an evolution equation for th
shape

]h

]t
5Kc

]

]x S h
]h

]xD . ~40!

Recall that we have assumed thatKc is constant in this deri-
vation.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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We summarize the known similarity solutions derived
Barenblatt5 for this scalar nonlinear PDE. Based on the sc
ings described in the previous section, we introduce a s
larity variable,

h5
x

~KcVLt !1/3
, ~41!

and a rescaled height functionf (h), where

h5
VL

~KcVLt !1/3
f ~h!. ~42!

This solution can be expressed as

h~x,t !5
VL

6~KcVLt !1/3F S 9

2D 2/3

2
x2

~KcVLt !2/3G , ~43!

where

hmax~ t !5
1

6 S 9

2D 2/3 VL

~KcVLt !1/3
, ~44!

and

R~ t !5S 9

2D 1/3

~KcVLt !1/3. ~45!

The above three formulas apply whenhmax(t)!R(t) or
equivalently when

t@
AVL

4A3Kc

. ~46!

We will make contact with the similarity solution pre
sented here for the constant permeability porous medium
ing methods of homogenized averaging applied to the m
general case of a variable permeability medium below.
particular, in Sec. IV we shall show how the above similar
solution can be applied to describe the averaged motion
gravity current through porous media with vertically and
horizontally layered permeability variations. Also, in Sec.
we will make use of slender asymptotics applied to the pr
lem defined in Sec. II to decouple the height field from t
elliptic operator. This leads to a scalar nonlinear PDE w
variable coefficients~i.e., Kc not uniform in space! that will
be analyzed using homogenization methods and conne
back to the similarity solution presented here.

First, however, we discuss the basic time scales imp
by these solutions in maintaining a localized, elevated a
symmetric density field.

B. Similarity solution in axisymmetric coordinates

If we follow a scaling analysis similar to that present
in the previous section for rectangular coordinates, we fi
that the limitH!R in the axisymmetric case has

R;~KcVT!1/4, ~47!

H;
V

~KcVT!1/2
, ~48!

whenT@V1/3/Kc , where the volume is given by
Downloaded 12 Jan 2005 to 129.6.88.39. Redistribution subject to AIP 
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V52pE
0

R~ t !
rh~r ,t !dr. ~49!

We can obtain a similarity solution in the limitH!R in
terms of the similarity variable,

h5
r

~KcVt!1/4
, ~50!

and a rescaled height functionf (h), where

h5
V

~KcVt!1/2
f ~h!. ~51!

This solution can be expressed as

h~r ,t !5
V

~KcVt!1/2 S 1

2Ap
2

1

8

r 2

~KcVt!1/2D , ~52!

where

hmax~ t !5
1

2Ap

V

~KcVt!1/2
, ~53!

and

R~ t !5
2

p1/4
~KcVt!1/4. ~54!

Again, the time regime represented here is set by the co
tion hmax(t)!R(t), which gives

t@
1

~r 4/3p1/3!

V1/3

Kc
, ~55!

and can be compared to Eq.~27!.

C. Predictions

Practically, when pumping brine into a field to assist
the cleanup process, it is important to assess how much b
must be continually injected to maintain an elevated, a
spatially localized brine layer. We may use the similar
solutions derived above, for the practical case of a rad
distribution, to assess basic leakage time scales in a po
medium for the slumping gravity current in the absence
pumping. This pure relaxation analysis gives a good desc
tion of how long the elevated density layer may persist in
field cleanup. Of course, with similarity solutions, initiall
the similarity solutions diverge, and we first must overcom
this problem by waiting a transient time scale to allow t
similarity solution to develop, and then we may use the
suing evolution to assess the slumping time scale. We
proach this transient time scale by matching a given dis
bution of fluid, integrating backward in time following th
similarity scalings to assess an initial volume and a trans
time scale that would have passed to reach the current
as a means to eliminate the transient time scale.

Consider a mass of fluid of parabolic shape whose he
is h* and whose radius isR* . We are interested in the evo
lution of this volume of fluid under the force of gravity. I
order to make use of our similarity solution described abo
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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we can associate this shape with a similarity solution
some initial volume at a particular timet* . In terms ofh*
andR* , the volume and associated time are given by

V5
p

2
h* ~R* !2, t* 5

~R* !2

8Kch*
. ~56!

These relationships follow from Eqs.~53! and ~54!.
Now, if we are interested in predicting the time it tak

for this mass of fluid to evolve from its initial heighth* to
some other heighth(t), where we definel5h(t)/h* , we
find that

l5
V1/2

2h* ApKc~ t* 1 t̃ !
5A t*

t* 1 t̃
, ~57!

where we have introduced the timet̃ that measures the tim
of evolution from the shape with heighth* and radiusR* .
We solve the above equation fort̃ and find that

t̃5t* S 1

l2
21D 5S ~R* !2

8Kch* D S 1

l2
21D . ~58!

Table I shows some data representative of an ideal
example of groundwater flow. Fort,t* , no fluid is outside
the radiusR* . For t.t* , the volume of fluidVout outside
this boundary can be represented by the integral

Vout~ t !52pE
R*

R0~ t !
rh~r ,t !dr, ~59!

whereh(r ,t) is given by Eq.~52!. Upon working out this
integral, we find that

v5
Vout~ t !

V
5F12S p1/4R*

2@KcV~ t* 1 t̃ !#1/4D 2G 2

. ~60!

In a similar manner to the above calculation, we find that
time for which a certain percentage of the volume of flu
~measured byv! to be outside a radiusR* is given by

t̃5t* S 1

~12Av!2
21D 5S ~R* !2

8Kch* D S 1

~12Av!2
21D .

~61!

Perhaps more simply, we can relate the fractional height
mainingl to the fractional volume lostv as

v5~12l!2. ~62!

TABLE I. Fractional height of fluid mass, time in days, and fraction loss
volume outside given radius: The predictions useh* 510 m, R* 534.4 m,
andKc51024 m/s. The corresponding value oft* given by Eq.~56! is 1.72
days.

l5h/h* time in days v5Vout /V

1 0 0
0.8 0.97 0.04
0.5 5.1 0.25
0.25 25.7 0.56
0.1 170 0.81
0 ` 1
Downloaded 12 Jan 2005 to 129.6.88.39. Redistribution subject to AIP 
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The corresponding values ofv are also shown in Table I
This is effectively just a geometrical relationship given th
our similarity shape is a parabola.

IV. EFFECTIVE FRONT DYNAMICS: HOMOGENIZED
AVERAGING OF THE GRAVITY CURRENT

With the similarity scalings and solutions identified, w
proceed to the more complex case involving a noncons
coefficient permeability. In this section we apply methods
homogenized averaging to assess the effect of the vari
permeability upon the slumping interface. We note that th
is a tremendous literature for homogenization in ma
contexts,14–21 most typically applied to linear problems
Here, we stress the problem addressed in this paper is
linear through the moving boundary condition. As such,
show formally how the averaging procedures work in th
more difficult context, and document its success numeric
below in Sec. VI.

To leading order, we will find that the homogenize
equations share essentially the same form as the con
coefficient equations analyzed previously, with the const
permeabilities replaced by constant, effective permeabilit
As such, the time-scale analyses from the previous sec
will apply to these averaged dynamics in an identical fa
ion, only with the permeability replaced by an effective pe
meability. We will document how this averaging works
this nonlinear problem in cases with horizontally or ver
cally layered permeabilities. We also describe a general c
in which the permeability varies in two spatial direction
Here we will present only the leading-order calculations, a
defer the interesting corrections to future work. In what fo
lows, the isotropic form of the permeability is modifie
through the averaging procedure to different permeabili
in the horizontal and vertical directions. We show how
make contact to the similarity scalings derived in Sec.
through the leading-order homogenization.

A. Homogenization theory: Vertical layers

In this section we consider the situation in which t
permeability of the porous medium is rapidly varying in th
horizontal direction so that layers of constant permeabi
are oriented vertically. Specifically we writeKc5Kc(x/e),
where e is a small parameter; we shall examine the lim
e→0. For simplicity, we shall assume thatKc(x/e) is a pe-
riodic function with unit period. We consider the governin
equations in the two-dimensional setting,

u52Kc~X!“f, ~63!

“"u50, ~64!

whereX5x/e. The kinematic boundary condition is give
by Eq. ~3!.

We proceed using a multiscale analysis in whichx andX
are treated as independent variables so that

]

]x
→ ]

]x
1

1

e

]

]X
. ~65!

Further, we expand the variables

f
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f~x,X,z,t !5f0~x,X,z,t !1ef1~x,X,z,t !1¯, ~66!

u~x,X,z,t !5u0~x,X,z,t !1eu1~x,X,z,t !1¯, ~67!

w~x,X,z,t !5w0~x,X,z,t !1ew1~x,X,z,t !1¯, ~68!

h~x,X,t !5h0~x,X,t !1eh1~x,X,t !1¯ . ~69!

At O~1/e! the horizontal component of Darcy’s equatio
gives

05Kc~X!
]f0

]X
, ~70!

which leads to the conclusion thatf0 is independent ofX so
f05f(x,z,t). At O~1! we find expressions for the leading
order velocity components,

u0~x,X,z,t !52Kc~X!F]f0

]x
1

]f1

]X G , ~71!

w0~x,X,z,t !52Kc~X!
]f0

]z
. ~72!

Sincef0 is independent ofZ we can averagew0 to find that

^w0&52^Kc&
]f0

]z
. ~73!

Here^•&5*0
21

•dX. In order to work out the average ofu0 ,
we shall first examine the equation forf,

05“"@Kc~X!“f#. ~74!

Expanding Eq.~74! gives atO(1/e2) that

05
]

]X FKc~X!
]f0

]X G , ~75!

which we know is identically satisfied sincef0 is indepen-
dent ofX. At O~1/e! we find that

]

]X FKc~X!
]f1

]X G52
]

]x FKc~X!
]f0

]X G
2

]

]X FKc~X!
]f0

]x G , ~76!

which upon integrating once gives

Kc~X!F]f1

]X
1

]f0

]x G5A~x,z,t !, ~77!

whereA(x,z,t) is an integration constant to be determine
Averaging this result and assuming thatf1 is periodic@that
is, f1(X50)5f1(X51)], we have

A~x,z,t !5 K 1

Kc
L 21 ]f0

]x
. ~78!

Now Eq. ~71! implies thatu0(x,X,z,t)52A(x,z,t) is
independent ofX, so

u05^u0&52 K 1

Kc
L 21 ]f0

]x
. ~79!

Expanding Eq.~74! gives, atO~1!,
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]

]X FKc~X!S ]f1

]x
1

]f2

]X D G
52

]

]x FKc~X!S ]f0

]x
1

]f1

]X D G2Kc~X!
]2f0

]z2
. ~80!

Averaging this equation and making use of Eqs.~77! and
~78! leads to the result that

05^Kc&
]2f0

]z2
1 K 1

Kc
L 21 ]2f0

]x2
. ~81!

This equation shows the anisotropy that is built into t
equations from the vertical layering, with one coefficient c
responding to the arithmetic mean of the permeabilities
the other corresponding to the harmonic mean as obse
by others, in the absence of the nonlinear moving bound
condition.4,20 These coefficients are reversed relative to
horizontally layered media discussed in the next section.

Next, examining the continuity equation“"u50 we find
that the O~1/e! problem is identically satisfied sinceu0

5u0(x,z,t) and that theO~1! problem is

]^u0&
]x

1
]^w0&

]z
50. ~82!

Finally, if we expand the boundary condition~3! applied
at z5h(x,X,t), we find that atO~1/e!,

05u0

]h0

]X
, ~83!

which implies thath05h0(x,t) is independent ofX. The
O~1! contribution from Eq.~3! is

u0

]h1

]X
52

]h0

]t
2u0

]h0

]x
1w0 . ~84!

Averaging this equation~integrate inX from 0 to 1! and
assuming the periodicity ofh1 gives

]h0

]t
1^u0&

]h0

]x
5^w0&. ~85!

So the full set ofaveragedleading-order equations are

^u0&52 K 1

Kc
L 21 ]f0

]x
, ~86!

^w0&52^Kc&
]f0

]z
, ~87!

05
]^u0&

]x
1

]^w0&
]z

, ~88!

and

]h0

]t
1^u0&

]h0

]x
5^w0&. ~89!

The average horizontal flow is proportional to the ha
monic mean of the permeabilities, while the vertical flow
proportional to the arithmetic mean of the permeabilitie
This is a well-known property of layered media4,20 and the
difference can be significant, especially if the permeability
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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any layer is near zero. In such a case there would be ver
flow through the regions of higher permeability but nearly
horizontal flow, as the fluid must attempt to flow across
regions of low permeability.

B. Similarity scalings for the averaged dynamics:
Vertical layers

To make contact to the similarity analyses presented
Sec. III, we now subject Eqs.~86!–~89! to the limit H!R.
We have @in terms of the leading-order pressurep0

5p0(x,z,t)]

^u0&52 K 1

K L 21 ]p0

]x
, ~90!

052
]p0

]z
2rg, ~91!

05
]^u0&

]x
1

]^w0&
]z

, ~92!

and

]h0

]t
1^u0&

]h0

]x
5^w0&. ~93!

Note that only the effective permeability appearing in t
horizontal component of Darcy’s equation governs
slumping gravity current. The form of these equations
equivalent to Eqs.~32!–~35!, from which we derived the
similarity solution. Consequently, Eqs.~43!–~46! apply here
simply by replacingKc in those formulas witĥ1/Kc&

21. We
confirm in Sec. VI that these equations give rise to a leadi
order problem that agrees well with numerical simulations
the full PDE that incorporates a permeability function w
dependence of the formKc(x/e).

C. Homogenization theory: Horizontal layers

In this section we consider the situation in which t
permeability of the porous medium is rapidly varying in t
vertical direction, that is, layers of constant permeability
oriented horizontally. Specifically we writeKc5Kc(z/e),
wheree measures the length scale of the variation and
amine the limite→0. For simplicity, we shall assume tha
Kc(z/e) is a periodic function with period unity. The gov
erning equations are the same as in the case of vertical
ers, except that Darcy’s equation is now written as

u52Kc~Z!“f, ~94!

whereZ5z/e.
We proceed using a multiscale analysis in whichz andZ

are treated as independent variables, so that

]

]z
→ ]

]z
1

1

e

]

]Z
. ~95!

Further, we expand the variables

f~x,z,Z,t !5f0~x,z,Z,t !1ef1~x,z,Z,t !1¯, ~96!

u~x,z,Z,t !5u0~x,z,Z,t !1eu1~x,z,Z,t !1¯, ~97!
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w~x,z,Z,t !5w0~x,z,Z,t !1ew1~x,z,Z,t !1¯, ~98!

h~x,t !5h0~x,t !1eh1~x,t !1¯ . ~99!

Note here thath is assumed to not depend on the fast scaleZ.
At O~1/e! the vertical component of Darcy’s equation

05Kc~Z!
]f0

]Z
, ~100!

which leads to the conclusion thatf0 is independent ofZ so
f05f(x,z,t). At O~1! we find expressions for the leading
order velocity components,

u0~x,z,Z,t !52Kc~Z!
]f0

]x
, ~101!

w0~x,z,Z,t !52Kc~Z!F]f0

]z
1

]f1

]Z G . ~102!

Sincef0 is independent ofZ we can averageu0 to find that

^u0&52^Kc&
]f0

]x
. ~103!

Here ^•&5*0
1
•dZ. In order to work out the average ofw0 ,

we shall first examine the equation forf,

05“"@Kc~Z!“f#. ~104!

Expanding Eq.~104! gives atO(1/e2) that

05
]

]Z FKc~Z!
]f0

]Z G , ~105!

which we know is identically satisfied sincef0 is indepen-
dent ofZ. At O~1/e! we find that

]

]Z FKc~Z!
]f1

]Z G52
]

]z FKc~Z!
]f0

]Z G
2

]

]Z FKc~Z!
]f0

]z G , ~106!

which upon integrating once gives

Kc~Z!F]f1

]Z
1

]f0

]z G5A~x,z,t !, ~107!

whereA(x,z,t) is an integration constant to be determine
Averaging this result and assuming thatf1 is periodic inZ,
we have

A~x,z,t !5 K 1

Kc
L 21 ]f0

]z
. ~108!

Now Eq. ~102! implies thatw0(x,z,Z,t)52A(x,z,t) is
independent ofZ using Eq.~107!. Therefore, using~108! the
averagedw0 is

^w0&52 K 1

Kc
L 21 ]f0

]z
. ~109!

Continuing to theO~1! problem from Eq.~104! gives
license or copyright, see http://pof.aip.org/pof/copyright.jsp



tio
o

st

th
d
al

i
m
on
ac

e
a

er
ns

-
an
al

in

ing
the
is

that
at
the
the
ne
ing

ni-
of

t

rous
n-

2818 Phys. Fluids, Vol. 15, No. 10, October 2003 Anderson, McLaughlin, and Miller
]

]Z FKc~Z!
]f2

]Z G52
]

]x FKc~Z!
]f0

]x G
2

]

]z FKc~Z!S ]f1

]Z
1

]f0

]z D G
2

]

]Z FKc~Z!
]f1

]z G . ~110!

Integrating this equation once, using the result forA(x,z,t)
and periodicity off2 , we find that

05^Kc&
]2f0

]x2
1 K 1

Kc
L 21 ]2f0

]z2
. ~111!

Here the same two averages of the permeability func
appear but are associated with the opposite terms as c
pared to the case of vertical layers.

Next, examining the continuity equation“"u50 we find
that the O~1/e! problem is identically satisfied sincew0

5w0(x,z,t) and that the averagedO~1! problem is

]^u0&
]x

1
]^w0&

]z
50. ~112!

Finally, we must address the boundary condition~3! applied
at z5h(x,t). We note that the coefficientsu0(x,z,Z,t) and
w0(x,z,t) must be evaluated atz5h0(x,t). It is clear what
to do in the case ofw0 , which does not depend on the fa
scaleZ. However,u0 does depend onZ and needs to be
evaluated atz5h0 . In order to get an equation forh0 that
approximates the full problem, we shall formally average
boundary condition inZ as if it were an equation that applie
in a region surrounding the actual boundary and then ev
ate the result atz5h0(x,t). Doing so gives the prediction

]h0

]t
1^u0&

]h0

]x
5^w0&. ~113!

Justification in this approach is given in the slender lim
case in which we show that the full numerical solution co
pares favorably with this approximation. Further justificati
of this result can be obtained by parametrizing the interf
by its horizontal positionx5L(z,t) rather than its height. We
would then takeL(z,Z,t) to be a function of the fast variabl
and identify a mathematical problem essentially like th
considered above for the case of vertically oriented lay
We show in Appendix A that, under suitable assumptio
doing so leads to an equation identical to~113!.

With this in mind the full set ofaveragedleading-order
equations are

^u0&52^Kc&
]f0

]x
, ~114!

^w0&52 K 1

Kc
L 21 ]f0

]z
, ~115!

05
]^u0&

]x
1

]^w0&
]z

, ~116!

and
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]h0

]t
1^u0&

]h0

]x
5^w0&. ~117!

Compare these with Eqs.~86!–~89!. Notice that here the av
erage horizontal flow is proportional to the arithmetic me
of the permeabilities, while the vertical flow is proportion
to the harmonic mean of the permeabilities.

D. Similarly scalings for the averaged dynamics:
Horizontal layers

To make contact to the similarity analyses presented
Sec. III, we now subject Eqs.~114!–~117! to the limit H
!R. We have@in terms of the leading-order pressurep0

5p0(x,z,t)]

^u0&52^K&
]p0

]x
, ~118!

052
]p0

]z
2rg, ~119!

05
]^u0&

]x
1

]^w0&
]z

, ~120!

and

]h0

]t
1^u0&

]h0

]x
5^w0&. ~121!

Note again that only the effective permeability appear
in the horizontal component of Darcy’s equation governs
slumping gravity current. The form of these equations
equivalent to Eqs.~32!–~35! from which we derived the
similarity solution. Consequently, Eqs.~43!–~46! apply here
simply by replacingKc with ^Kc&. We confirm in Sec. VI
that these equations give rise to a leading-order problem
agrees well with numerical simulations of the full PDE th
incorporates a permeability function with dependence of
form Kc(z/e). We note that there is a length scale set by
permeability variations in the vertical direction and also o
set by the thinness of the fluid layer and when implement
specific permeability functionsKc(z/e) one must keep in
mind the relative size of these two length scales.

E. Homogenization theory: Two-dimensional
periodicity

In this section we describe the leading-order homoge
zation problem for a case in which there is rapid variation
the permeability function in two directions so thatKc(X,Z),
where X5x/e and Z5z/e. For simplicity we assume tha
this function is periodic inX andZ with unit period in each
direction. This case is important because most natural po
medium systems have spatial variability in multiple dime
sions, making this a useful extension to our analysis.

We focus on the problem in terms of the functionf,
which satisfies

“"@Kc~X,Z!“f#50, ~122!

subject to the free-surface boundary condition
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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]h

]t
1u

]h

]x
5w, at z5h. ~123!

In order to pursue a homogenization with two fast va
ablesX andZ, we need to decide how to handle the applic
tion of the boundary condition atz5h. We discuss this be
low after revisiting the approach used for the equatio
applied in the bulk. The standard homogenization techniq
for bulk quantities such asf proceed by assuming thatf
5f(x,z,X,Z) depends on four independent variables~for
ease of notation we suppress dependence on time in this!.
We shall outline the known steps and results for the hom
enization of Eq.~122!.

We assume an expansion forf of the form

f5f0~x,z,X,Z!1ef1~x,z,X,Z!1¯ . ~124!

Equation~122! is expanded as

S ]

]x
1

1

e

]

]XD FKc~X,Z!S ]f

]x
1

1

e

]f

]XD G
1S ]

]z
1

1

e

]

]ZD FKc~X,Z!S ]f

]z
1

1

e

]f

]Z D G50. ~125!

At O(e22) we findLf050 whereL is a linear operator
given by

L5
]

]X S Kc

]

]XD1
]

]Z S Kc

]

]ZD . ~126!

This is solved by a functionf05f0(x,z) that is independen
of the fast scalesX andZ.

At O(e21) we find that

Lf152S ]Kc

]X

]f0

]x
1

]Kc

]Z

]f0

]z D . ~127!

For use in the boundary condition we note that this equa
can also be expressed as

]

]X FKcS ]f0

]x
1

]f1

]X D G1
]

]Z FKcS ]f0

]z
1

]f1

]Z D G50.

~128!

This is solved by a function

f15u1~X,Z!
]f0

]x
1u2~X,Z!

]f0

]z
, ~129!

where the coefficientsu1 and u2 satisfy the two cell prob-
lems

Lu152
]Kc

]X
, Lu252

]Kc

]Z
. ~130!

At O~1! after some manipulations we find thatf0 satis-
fies the general elliptic problem

a
]2f0

]x2
12b

]2f0

]x]z
1g

]2f0

]z2
50, ~131!

where the coefficients are given by

a5 ^̂ Kc&&2 ^̂ Kcu“u1u2&&, ~132!

b52 ^̂ Kc“u1"“u2&&, ~133!
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g5 ^̂ Kc&&2 ^̂ Kcu“u2u2&&, ~134!

where ^̂ •&&5*0
1*0

1
•dXdZ. Further details involved in this

calculation can be found in Holmes.22

We now address the boundary condition~123!. With the
introduction of two new independent variablesX andZ, we
must identify a plausible way to address the boundary c
dition originally applied atz5h(x,t). Our approach is as
follows. We allow the interface position to depend onX, but
not onZ. In particular, we writez5h(x,X,t). We note, how-
ever, that the termsu andw appearing in the boundary con
dition have as their argumentsu(x,z,X,Z) andw(x,z,X,Z)
to be evaluated atz5h. If we ‘‘preaverage’’u andw in theZ
direction before inserting them into the boundary conditio
we have

]h

]t
1^u&Z

]h

]x
5^w&Z , at z5h~x,X,t !, ~135!

so that, the quantitieŝu&Z and ^w&Z depend only on the
variablesx, X, and t. The subscript, on average, indicat
with respect to what variable the average is taken. We s
indicate this subscript only where necessary. Equation~135!
will then be the starting point for the homogenization tec
niques to be applied in theX direction.

At O(e21) the boundary condition is satisfied by takin
h05h0(x,t). At O~1! the boundary condition can be writte
as

]h0

]t
1^u0&ZS ]h0

]x
1

]h1

]X D5^w0&Z . ~136!

If we average this inX we have

]h0

]t
1^^u0&Z&X

]h0

]x
2K K KcS ]f0

]x
1

]f1

]X D L
Z

]h1

]X L
X

5^^w0&Z&X , ~137!

where in the third term on the left-hand side we have
pressed the form of the velocitŷu0&Z in terms off. Note
that in general the leading-order velocity components are

u0~x,z,X,Z!52Kc~X,Z!S ]f0

]x
1

]f1

]X D , ~138!

w0~x,z,X,Z!52Kc~X,Z!S ]f0

]z
1

]f1

]Z D . ~139!

We now note that the third term on the left-hand side of E
~137! vanishes:

K K KcS ]f0

]x
1

]f1

]X D L
Z

]h1

]X L
X

52K h1

]

]X K KcS ]f0

]x
1

]f1

]X D L
Z
L

X

, ~140!

52K h1K ]

]X FKcS ]f0

]x
1

]f1

]X D G L
Z
L

X

, ~141!
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5K h1K ]

]Z FKcS ]f0

]z
1

]f1

]Z D G L
Z
L

X

, ~142!

5K h1FKcS ]f0

]z
1

]f1

]Z D G
Z50

Z51L
X

50. ~143!

The first line follows from integration by parts noting th
the boundary term~evaluated atX50 andX51) vanish by
periodicity in X, the second line by exchanging the order
differentiation with respect toX and integration with respec
to Z, the third line from Eq.~128!, and the fourth line by
integration inZ and applying periodicity inZ.

The full set of averaged leading-order equations are

^̂ u0&&52a
]f0

]x
2b

]f0

]z
, ~144!

^̂ w0&&52b
]f0

]x
2g

]f0

]z
, ~145!

05
]^̂ u0&&

]x
1

]^̂ w0&&
]z

, ~146!

subject to the free surface boundary condition

]h0

]t
1 ^̂ u0&&

]h0

]x
5 ^̂ w0&&, at z5h0~x,t !, ~147!

wherea, b, andg are given by Eqs.~132!–~134!.

F. Similarity scalings for the averaged dynamics:
Two-dimensional periodicity

To make contact to the similarity analyses presented
Sec. III we now subject Eqs.~144!–~147! to the limit H
!R. The scaling choices here are exactly the same as in
previous vertical and horizontal layer cases. We note tha
in the case of purely vertical variation in the permeabil
function one must keep in mind that the horizontal and v
tical length scales are different when specifyingKc . The
presence of derivatives off with respect to bothx and z
leads to an extra step required in the identification of
averaged velocities. We expandf05f0

01df0
11¯, where

d5H/R, and again find thatf0
0 is independent ofz. It fol-

lows from the boundary conditionf5h on z5h that f0
0

5h0(x,t). At the next order we find from Eqs.~144! and
~145! that

^̂ u0&&52a
]f0

0

]x
2b

]f0
1

]z
, ~148!

052b
]f0

0

]x
2g

]f0
1

]z
. ~149!

We can solve these two equations to find

^̂ u0
0&&52S a2

b2

g D ]f0
0

]x
. ~150!

It follows from the continuity equation that the vertical v
locity is given by
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^̂ w0
0&&51S a2

b2

g D ]2f0
0

]x2
z. ~151!

Inserting these results into the free surface boundary co
tion and noting thatf0

05h0 gives

]h0

]t
5

~ag2b2!

g

]

]x Fh0

]h0

]x G . ~152!

A comparison of this with full numerical simulations wit
Kc5Kc(x,z) requires a numerical calculation of the coef
cient (ag2b2)/g via the cell problems~130!. We leave this
for future work where the validity of the formal preaveragin
applied to the moving interface can be assessed. This e
tive permeability reduces to those previously identified
vertical and horizontal layers.

V. A THIN ASPECT RATIO, SCALAR PDE FOR
SLUMPING GRAVITY CURRENTS

We remark that the homogenization of a moving inte
face is a somewhat nebulous concept, and the homogen
tion of such nonlinear problems certainly can be supp
mented by rigorous mathematical analysis. To give a m
concrete picture for what is going on, in this section, we fi
derive a decoupled, variable coefficient partial different
equation governing the slumping interface under
asymptotic assumption of a thin, wide gravity current, with
vertically layered background porous medium. We then,
turn, compute the leading-order homogenization, which
found to agree with the homogenized dynamics of Sec. IV
Finally, we conclude this section with a presentation of t
explicit correction to the homogenized dynamics.

In the limit H/R→0 the original governing equations ar
given by

u52Kc~X!
]f

]x
, ~153!

052Kc~X!
]f

]z
, ~154!

05
]u

]x
1

]w

]z
, ~155!

w~h!5
]h

]t
1u~h!

]h

]x
. ~156!

Upon noting that the second of these equations leads to
result that f5f(x,X,t) we find that f5h(x,X,t) from
boundary condition~11!.

We are interested in examining this problem using
multiscale method and averaging over the fast variations iX
to get a leading-order effective problem but then also obta
ing corrections to this leading-order behavior that show
tails of the fast variations. This method has been develo
and applied to a single PDE. Here we aim to understand h
such a method can be applied when there is a free boun
in the problem. The above thin limit offers a convenient s
ting in which to examine this issue as the system in this c
can be reduced to a single PDE for the interface posit
h(x,X,t). This equation is given by
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]h

]t
5

]

]x FKc~X!h
]h

]xG , ~157!

and is subject to the conditions]h/]x50 at x50 and h
50 at x5R. As noted earlier, the evolution of the conta
line positionR is determined by examining Eq.~157! and the
condition h50 at the contact line. That is, computing th
dynamics ofh according to Eq.~157! will effectively deter-
mine the dynamics ofR by applying h50 at x5R. Our
focus, then, will be on the dynamics ofh.

We expand Eq.~157! using multiscale methods and ob
tain atO(e22) that

05
]

]X FKc~X!h0

]h0

]X G , ~158!

which indicates thath05h0(x,t). At O(e21) we find that

05
]

]X FKc~X!S h0

]h1

]X
1h1

]h0

]X D G1
]

]x FKc~X!h0

]h0

]X G
1

]

]X FKc~X!h0

]h0

]x G . ~159!

It follows from this equation that

Kc~X!h0F]h1

]X
1

]h0

]x G5a~x,t !, ~160!

where, upon averaging and usingh1(X50)5h1(X51), we
find that the functiona(x,t) is given by

a~x,t !5^Kc
21&21h0

]h0

]x
. ~161!

It also follows that

h1~x,X,t !5
]h0

]x E
0

XF Kc
21

^Kc
21&

21GdX1b~x,t !, ~162!

whereb(x,t) is a function to be determined.
At O~1!,

]h0

]t
5

]

]X FKc~X!S h0

]h2

]X
1h1

]h1

]X
1h2

]h0

]X D G
1

]

]x FKc~X!S h0

]h1

]X
1h1

]h0

]X D G
1

]

]X FKc~X!S h0

]h1

]x
1h1

]h0

]x D G
1

]

]x FKc~X!h0

]h0

]x G . ~163!

Upon averaging this equation we find that the leading-or
interface shapeh0(x,t) satisfies the equation

]h0

]t
5^Kc

21&21
]

]x Fh0

]h0

]x G . ~164!

This equation can be compared to Eq.~40!, where we note
that herê Kc

21&21 replaces the constantKc in ~40!. We can
also integrate Eq.~163! to obtain
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h0S ]h2

]X
1

]h1

]x D1h1S ]h1

]X
1

]h0

]x D5
c̃~x,t !

Kc~X!
, ~165!

where c̃(x,t) is a function to be determined. We can dete
mine c̃(x,t) by averaging Eq.~165! to obtain

h0K ]h1

]x L 52^h1&
]h0

]x
1 c̃^Kc

21&, ~166!

while the solution forh1 in Eq. ~162! gives

K ]h1

]x L 5
]2h0

]x2 K E
0

XS K21

^K21&
21D dXL 1bx . ~167!

These two results together give an expression forc̃,

c̃~x,t !^Kc
21&5

]~bh0!

]x
1^X&

]

]x Fh0

]h0

]x G2
]h0

]t K X

Kc
L .

~168!

At O~e!,

]h1

]t
5

]

]X FKc~X!S h0

]h3

]X
1h1

]h2

]X
1h2

]h1

]X
1h3

]h0

]X D G
1

]

]x FKc~X!S h0

]h2

]X
1h1

]h1

]X
1h2

]h0

]X D G
1

]

]X FKc~X!S h0

]h2

]x
1h1

]h1

]x
1h2

]h0

]x D G
1

]

]x FKc~X!S h0

]h1

]x
1h1

]h0

]x D G . ~169!

Upon averaging this equation, using Eq.~165!, and period-
icity of the solutions, we find that

]

]t
^h1&5

] c̃

]x
. ~170!

This equation can be written in terms of the unknown fun
tion b(x,t) as

]b

]t
5^Kc

21&21
]2~bh0!

]x2
. ~171!

We note that this equation forb is the equation forh0 linear-
ized abouth0 , so that we can write

h~x,X,t !5h̃0~x,t !1eh1
~p!~x,X,t !, ~172!

whereh̃0(x,t)5h0(x,t)1eb(x,t) satisfies

]h̃0

]t
5^Kc

21&21
]

]x F h̃0

]h̃0

]x G , ~173!

andh1
(p) is given from Eq.~162! by

h1
~p!5

]h0

]x E
0

XF Kc
21

^Kc
21&

21GdX. ~174!

We note that the correction given in Eq.~174! depends
upon the homogenized solution,h0(x,t), as well as the ex-
plicit structure of the underlying porous media. A compa
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 1. Approach~A!: Maximum of h(x,t) versus
time, normalized by the similarity solution withK0

50.5 and using the effective permeabilityKc*
50.866 025 in the similarity solution.
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son with the general aspect ratio correction forh will be
explored in a subsequent work devoted to the full tw
dimensional analysis and simulations.

VI. COMPUTATIONAL SIMULATIONS

A. Numerical approximation approaches

In the previous three sections, we explored the theor
cal averaging of the evolving gravity current under the
sumption of rapidly varying, vertically and/or horizontall
layered porous media. In the case of vertically layered m
dia, we derived, in addition, explicit corrections valid fo
thin aspect ratios. Here we present computational sim
tions, which demonstrate three points made in this arti
applied to the special case of the thin aspect ratio varia
coefficient dynamics. First, we document that from a gene
non-self-similar initial condition, the self-similar scalin
emerges in finite time for the case of a variable coeffici
permeability through normalization by the similarity solutio
employing an effective, homogenized permeability. Seco
we further document that the leading-order averaging the
emerges at finite time, and finitee ~wavelength! here through
numerical comparison of the front profiles between the
solution with variable coefficient permeability and that of t
homogenized dynamics. Last, we explicitly show that
theoretical corrections to the leading-order homogenized
namics are accurate as regards the simulations at both
time, and fixed, finitee in the interior, away from the contac
line region.

We consider the numerical simulation of the followin
partial differential equation:

]h

]t
5

]

]x F ]h

]x E0

h

Kc~x/e,z/e!dzG , ~175!

which allows a general hydraulic conductivity functio
Kc(x/e,z/e). This equation simplifies depending on the sp
cific form for Kc and is not an integrodifferential equatio
The variablez here is scaled with respect to the thin geo
etry and so represents a special case of the two-dimens
periodicity described earlier. We examine two special ca
of variability in one dimension by exploring the solution
this equation for cases with vertical layers and with horizo
tal layers. We shall implement two distinct numerical a
proaches: one is an explicit method that avoids direct ap
cation of contact line boundary conditions and the secon
an implicit method that incorporates the contact line bou
ary conditions. Below we outline these methods and res
of the calculations.
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In approach~A! we solve Eq.~175! and attempt to sim-
plify the handling of the contact line condition. Rather th
imposing directly the contact line conditions we take an i
tial profile that is a tight Gaussian:

h~x,0!5b0e2~x2L/2!2/a0, ~176!

applied over the entire computational domain of lengthL.
The contact line conditions are then effectively replaced b
region of small but nonzero values ofh extending to the end
of the computational domain. Furthermore, we do not
force symmetry. Unless otherwise noted, we takeL520, the
amplitudeb0510, and the width,a050.75. The permeabil-
ity function is given byKc(x/e)511K0 sin 2px/e corre-
sponding to vertically oriented layers. Unless otherw
noted, we utilize the value ofe50.5, which corresponds to
roughly 40 oscillations over the spatial domain. Further,
the initial data considered, the initial data spans roug
eight periods of the permeability field. Since this is a on
dimensional problem we use an explicit time-steppi
scheme with an extremely small time step to compute
solution. Unless otherwise noted, all simulations for a
proach ~A! are run until timet55.0 using 1.23107 time
steps, and a uniform spatial mesh with 2400 spatial nod
By this output time, the gravity current is very well define
and has not reached the end of the computational doma

In approach~B! we impose directly the boundary cond
tions ~6! and ~7!. The contact line condition,

dR

dt
5u~R,t !52Kc~R/e!

]h

]xU
x5R

, ~177!

is also directly enforced. Consistent with the imposed sy
metry, we choose the even functionKc(x/e)51
1K0 cos(2px/e) for the permeability, whereK0 and e are
given constants. The initial conditions areh(x,0)5AH(1
2x2) andR(0)51, whereAH is a given constant. We solv
this system numerically using a finite difference approa
with second-order accurate central differencing in space
a backward Euler implicit time stepping routine. The deta
are given in Appendix B.

B. Vertically layered case

In Fig. 1, using approach~A!, we document the rapid
convergence to the similarity scaling given in~44! by taking
the maximum of the computed fieldh(x,t) and normalizing
by the similarity scaling given in Eq.~44!. In this simulation,
the variable coefficient permeability has amplitudeK05 1

2.
The effective permeability, in this geometry given by th
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Approach~A!: A comparison between the spa
tial profiles at time,t55, between the simulated com
plete solution, and simulated homogenized solutio
with K050.5, andKc* 50.866 025
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harmonic mean, isKc* 50.866 025. Observe that the conve
gence to unity is very rapid, indicating that the similari
scaling is reached quickly, and that the system, at leas
regards the maximum, is homogenizing quickly as well.

In Fig. 2, we show a comparison between the spa
profiles of the height field at the final time oft55. Observe,
the unaveraged solution oscillates rapidly~with a wavelength
set by the intrinsic period of the underlying permeabilit!
about the simulated effective dynamics. Clearly, the hom
enized dynamics are doing an excellent job in capturing
dynamics.

In Figs. 3 and 4, we document the remarkable succes
the correction to the leading-order homogenized dynamic
capturing the true behavior given by the full unaverag
simulation. Definee(x,t)5h(x,t)2h0(x,t), whereh0(x,t)
is the homogenized solution. Figure 3 shows the spatial p
file of the fielde(x,t) at timet55. Observe there is a period
scale oscillation with amplitude growing roughly linear
from the center, with an abrupt drop off at the edge of
current. The linear envelope can be understood by noting
h1;]h0 /]x @see Eq.~174!# and thath0 is approximately
parabolic.

To make a direct comparison with the theoretical pred
tion of Sec. IV B, we numerically process the correcti
given in Eq.~174!, since it involves the nonlinear, homog
enized dynamics. However, since we have already comp
the homogenized solution~at a greatly diminished cost a
compared with that necessary to resolve the rapid osc
Downloaded 12 Jan 2005 to 129.6.88.39. Redistribution subject to AIP 
as

l

-
e

of
in
d

o-

e
at

-

ed

a-

tions in the unaveraged dynamics!, this task is automatic
Define E(x,t)5e(x,t)2h1(x,t). The field E(x,t) denotes
the difference between the theoretical prediction and the
simulation of the unaveraged dynamics. In Fig. 4, we do
ment the success of the homogenization approach in
simple case of a scalar nonlinear variable coefficient PDE
showing the fieldE(x,t) at time t55. Observe that essen
tially across the entire spatial domain, the theoretical pred
tion is extremely good, with the error possibly accumulati
at the edge of the gravity current. This error is qualitative
similar to that computed using approach~B!, see below,
where the contact line is directly incorporated in the calc
lation.

Calculations using approach~B! are shown in Figs. 5–8
In Fig. 5~a! we show a comparison of the full numeric
solution h(x,t) and two approximate solutions of the form
h01eh1 . One approximate solution calculatesh0 numeri-
cally using Eq.~175! with the variableKc replaced by the
constant effective valuêKc

21&21. The derivative ofh0 ap-
pearing in the analytical formula forh1 @see Eq.~174!# is
calculated using thish0 solution. This is the approximation
based on the leading-order numerical solution. The other
proximate solution uses the similarity solution forh0 , again
with the value ofKc taken to be the constant effective valu
The derivative]h0 /]x in the formula forh1 is obtained from
the similarity solution. This is the approximation based
the similarity solution. As can be seen from this figure, t
at

FIG. 3. Approach~A!: Difference between the full un-
averaged simulation and the homogenized simulation
t55.
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FIG. 4. Approach ~A!: The simulated error field,
E(x,t), at t55.
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approximate solutions appear to agree well with the full n
merical solution.

In Fig. 5~b! we show the difference between the fu
numerical solution and the leading-orderh0 , e(x,t)
5h(x,t)2h0(x,t), based on the leading-order numerical s
lution ~solid line! and the similarity solution~dashed line!.
These curves should approximate the known correction
mula, shown in Fig. 5~c!. Note that Fig. 5~c! shows the ana-
lytical correction calculated with both the leading-order n
merical solution and the similarity solution, indicating ve
good agreement between the two.

The difference between the curves in Fig. 5~b! and those
in Fig. 5~c! is E(x,t)5h(x,t)2h0(x,t)2eh1(x,t) and is
shown in Fig. 5~d!. Again, the solid curve shows the diffe
ence based on the leading-order numerical solution and
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dashed line shows that based on the similarity solution. T
error indicates very good agreement between numerical
approximate solutions in the interior region. The error is b
ter in the interior, in general, in all simulations using th
explicit approach~A! and the implicit approach~B!. This
trend remains with increased spatial and temporal resolut

In Fig. 6 we quantify the dependence of the erro
e(x,t)5h(x,t)2h0(x,t) and E(x,t)5h(x,t)2h0(x,t)
2eh1(x,t) on e. Since there is a computational trade-o
between the end point in timet for the calculation and the
spatial resolution used, we have chosen to make this e
assessment at a relatively early timet50.1 in order to make
feasible computations with smaller values ofe and more spa-
tial resolution. Consequently, we use the leading-order
merically computed solution rather than the similarity so
e been

FIG. 5. Approach~B!: This figure shows~a! the solution profiles,~b! the differencee(x,t)5h(x,t)2h0(x,t), ~c! the correction formulaeh1(x,t), and~d! the
differenceE(x,t)5h(x,t)2h0(x,t)2eh1(x,t). See the text for an explanation of the different curves shown. The numerical solutions shown here hav
computed usingnt510 000,nx51000,K050.6, e50.375, andAH510. Note thatKc* 5^Kc

21&2150.8 in this case.
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FIG. 6. Approach ~B!: This figure
shows different measures of error a
reduced from error fields similar to
those shown in Figs. 5~b!, 5~d!. This
set of error data has been calculated
an early timet50.1. The overall error
fields e(x,t) and E(x,t) both decay
linearly with e. However, the interior
errorE(x,t) measured on the intervals
x,R/4 andx,R/8 suggest quadratic
decay ine in the interior. The quantity
max(uE(x,t)u) measured over allx
really measures the error near the co
tact line as that is where the maximum
error occurs and indicates nonuniform
convergence of the expansionh0

1eh1 . The numerical solutions shown
here have been computed usingnt
5500, nx52000, K050.6, and AH

510 with different values ofe, as in-
dicated.
th
nd
f
ap
r
e
a
is

ve
a-

-
-

ear
tion in the comparison. We show several measures of
error. In this figure, the two drawn lines indicate linear a
quadratic dependence one. We first show the maximum o
ue(x,t)u over the spatial domain. This error decreases
proximately linearly ine, indicating that the leading-orde
solution is uniformly valid over the whole domain. Th
maximum of uE(x,t)u over the whole domain indicates
trend that is linear ine also. However, we note that this
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really measuring the error at the contact line, which we ha
already noted is larger than in the interior. Two other me
sures of the erroruE(x,t)u are shown for two interior regions
@(x,R/4) and (x,R/8)], showing that this error is approxi
mately quadratic ine, or at leasto(e). The observed nonuni
formity of the errorE(x,t)5h2h02eh1 indicates that the
correction formulah1 is not uniformly valid. It is clear that
the error is spatially dependent and is consistently larger n
e-

-
s

n
-
n
l-
-
-

-

FIG. 7. Approach~B!: The full solu-
tion profile ~solid curve! and leading-
order solution profile~dashed curve!
plotted against the background perm
ability in the vertical layer case. The
vertical lines in the upper plot corre
spond to where the permeability, a
shown in the lower plot, takes on its
mean value. In regions of higher tha
mean permeability, the interface pro
file has a smaller slope than it does i
regions of lower than mean permeabi
ity. Note that the bulges in the inter
face profile are localized around re
gions where the permeability is
decreasing most rapidly. The full nu
merical solution in this figure hasnt
510 000,nx51000,K050.6, e50.5,
and AH510. Note thatKc* 5^Kc

21&21

50.8 in this case.
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FIG. 8. Approach~B!: The full solu-
tion profile ~solid curve! and leading-
order solution profile~dashed curve!
plotted against the background perm
ability in the horizontal layer case. The
horizontal lines in the left plot corre-
spond to where the permeability, a
shown in the right plot, takes on its
mean value 1. This figure hasnt
55000, nx5500, K050.6, e50.5,
and AH510. Note that Kc* 5^Kc&
51.0 in this case.
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the contact line. The clear quadratic scaling of the error
the interior gives strong evidence that the correction form
las both are asymptotically correct, and achieve in captu
the spatial imprint imparted to the evolving interface by t
medium. At the contact line, however, the corrections m
not be asymptotically valid. Ultimately determining if th
corrections are asymptotic at the contact line will requ
further simulations, and potentially different local expansi
techniques. It is noteworthy that the corrections are perfo
ing correct in the interior for the interface, which is a boun
ary in its own right.

Figure 7 shows a close-up of the profiles withe50.5
with all other parameters as shown in Fig. 5. The upper p
shows the numerically calculated solution with variable p
meability ~solid curve! and the numerically calculated solu
tion with an effective permeability of̂Kc

21&2150.8 ~dashed
curve!. Again, it is clear that the calculation with effectiv
permeability agrees well with the bulk motion of the grav
current in the variable permeability case. The backgrou
permeability is shown in the lower figure~the vertical dashed
lines in the upper plot separate regions of high and low p
meabilities!. We note that the bulges in the fluid profile a
pear to be approximately 90° out of phase with the maxi
in the permeability function. This shape is consistent with
analytical formula derived for the correctionh1 given by Eq.
~174! and as shown in Fig. 5. The flatness of the profile
the region of high permeability indicates the fluid’s grea
mobility in that region.

C. Horizontally layered case

To test the leading-order predictions for horizontal la
ers, we numerically simulate a case withKc5Kc(z/e) in the
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slender aspect ratio limit using approach~B!. We solve Eq.
~175! with Kc(z/e)511K0 cos(2pz/e), wherez here is in-
terpreted as scaled with respect to the thin geometry. N
that in this case the predictions from Sec. IV D suggest t
the leading-order behavior can be obtained by replacing v
ableKc with ^Kc&. For the above choice ofKc(z/e) we find
that ^Kc&51. Figure 8 shows on the left the numerical
calculated solution withK050.6 ande50.5 ~solid curve!
and the numerically calculated solution with a constant
fective permeabilitŷ Kc&51 ~dashed curve!. This leading-
order solution is clearly capturing the bulk motion of th
fluid. Indicated on the right of Fig. 8 is the permeabili
variation used in the full simulation. We can see that in
gions of lower than mean permeability, the interface la
behind the homogenized solution and in regions of hig
than mean permeability the interface precedes the hom
enized profile. Bulges of the interface are in phase with
permeability variations.

We point out here that based on the leading-order si
larity solutions for the vertical and horizontal layer cases
can compare the spreading rates of these two situations u
Eq. ~54!. If we represent the radius for vertically oriente
layers byRV and that for horizontally oriented layers byRH ,
we find that

RV

RH
5

^Kc
21&21

^Kc&
. ~178!

This ratio is less than one, which implies that gravity cu
rents flowing in horizontally layered media spread faster th
the same gravity current flowing in a vertically layered m
dia.
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VII. CONCLUSIONS

In this article, we have explored the behavior of a slum
ing gravity current in the presence of a variable permeab
porous medium. We have identified the similarity scalin
and solutions for a constant permeability medium, and in
twined these tools with the variable permeability ca
through the method of homogenized averaging, specific
in cases with either vertically or horizontally layered perm
abilities. For the case of two-dimensional permeability, us
a more formal approach, we derive effective medium dyna
ics, and show how the slender limit similarity dynamics a
obtained up to a coefficient, which must be obtained in g
eral through the numerical solution of an auxiliary cell pro
lem. Under the assumption that the gravity current is thin,
identified that the height itself completely decouples yield
a scalar, variable coefficient nonlinear PDE governing
moving interface. We analyzed this case in detail, both at
level of leading-order homogenization and with correctio
for the case of vertical layers, and further documented
success of this averaging approach through computati
simulations in this simplified geometry.

Many issues require further study. Clearly, general
rous media are not layered as such, but will have full top
ogy, and the study of the moving interface problem, in g
eral, will require at least the homogenization of a nonlaye
background. It is expected that the connection to the sim
ity scalings through homogenized averaging will be a g
eral principle; though the calculation of the effective perm
abilities themselves is a nonexplicit task in the absence
layered structure. Moreover, identifying how the structure
the medium manifests itself upon the slumping gravity c
rent surely will require the complete simulation of the ful
coupled and multidimensional system. The assumption of
riodicity should be ultimately relaxed as well if an efficie
pumping strategy is to be ultimately designed to handle g
eral porous media, and supplemented with a random per
ability tensor. Homogenization methods may well work
these more complicated environments; however, a stud
the averaging of the underlying elliptic operators is nec
sary. The averaging method for general topology for
complete system~outside of the lubrication approximation!
is more formal than the averaging presented for layered
tems. Future work will compare this methodology with com
plete simulations of the full porous media system.

The study presented here provides a first pass at as
ing the relevant time scales for maintaining an elevated d
sity profile in a porous media, and further documents
success of the leading-order plus corrected homogeniza
theory applied to this nonlinear problem, as regards both
gravity current scaling properties and spatial profile of
moving interface.
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APPENDIX A: ALTERNATE INTERFACE
PARAMETRIZATION

In the case of a horizontally layered medium withKc

5Kc(Z) and Z5z/e, we examine a parametrization of th
interface position in which it is identified by its horizonta
location x5L(z,Z,t). This quantity may have explicit de
pendence on the fast variableZ. In terms of this parametri-
zation the free-surface boundary condition is

]L

]t
1w

]L

]z
5u, at x5L~z,Z,t !. ~A1!

While this parametrization may be problematic at locatio
such as the point of symmetry (x50), where]L/]z is infi-
nite, it remains an instructive description for the present p
poses. If we subject this equation to an expansion ine
coupled to the equations in the bulk as described in S
IV C, we find that at leading order ine, L05L0(z,t) is inde-
pendent of the fast variableZ and, furthermore, thatL0 sat-
isfies

]L0

]t
1^w0&

]L0

]z
5^u0&, at x5L0~z,t !, ~A2!

where in this context̂•& indicates*0
1dZ. The quantitieŝu0&

and ^w0& are given by Eqs.~114! and ~115!.
Under suitable conditions, Eq.~A2! can be expressed

back in terms of a function interpreted as height rather th
horizontal position. In particular, we assume thatx
5L0(z,t) defines a function that is invertible so thatz
5L0

21(x,t) is its inverse function with respect to spatial va
ables. HereL0

21(x,t) is a height function that we later re
nameh0(x,t).

The relationL0
21@L0(z,t),t#5z leads to the following

two expressions when taking partial derivatives with resp
to z and t:

]L0
21

]x
U

t

]L0

]z U
t

51, ~A3!

]L0
21

]x
U

t

]L0

]t U
z

1
]L0

21

]t
U

x

50, ~A4!

where we indicate the quantities that are held fixed dur
differentiation. If we solve these two equations for]L0 /]z
and]L0 /]t and substitute the results into Eq.~A2!, we find
that
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2

]L0
21

]t

]L0
21

]x

1^w0&~L0 ,z,t !
1

]L0
21

]x

5^u0&~L0 ,z,t !, ~A5!

where we have indicated explicitly the arguments of the t
averaged velocities. When]L0

21/]x is nonzero~which we
assume to be true away from the point of symmetry ax
50), we can rearrange the terms in this equation, usz
5L0

21(x,t)5h0(x,t) andx5L0(z,t) to obtain

]h0

]t
1^u0&~x,h0 ,t !

]h0

]x
5^w0&~x,h0 ,t !, ~A6!

which is identical to Eq.~113!.

APPENDIX B: IMPLICIT NUMERICAL METHOD

The governing equations are made dimensionless
scaling lengths with the initial radiusR0 , hydraulic conduc-
tivity with Kc

0, and time withR0 /Kc
0, whereKc

0 is a refer-
ence value for the hydraulic conductivity. The dimensionle
equations to solve are

]h

]t
5

]

]x FKc~x/e!h
]h

]xG , ~B1!

whereKc511K0 cos(2px/e). HereK0 ande are parameters
associated with the permeability function. The evoluti
equation is subject to the boundary conditions~6! and ~7!
and the initial conditions

h~x,0!5AH~12x2!, R~0!51, ~B2!

where AH is a measure of the initial height of the flui
mound that can be related to the initial volume. The cont
point R(t) evolves according to

dR

dt
5u~R,t !52Kc~R/e!

]h

]xU
x5R

~B3!

We map the horizontal domain 0<x<R(t) to the do-
main 0<x8<1 using the transformationx85a1(t)x and t8
5t, where

a1~ t !5
1

R~ t !
. ~B4!

It follows that the derivatives transform as

]

]x
→a1~ t !

]

]x8
, ~B5!

]

]t
→ ]

]t8
1S x8

a1~ t8!

da1

dt D ]

]x8
, ~B6!

where da1 /dt52a1
2dR/dt. This leads to the transforme

evolution equation
Downloaded 12 Jan 2005 to 129.6.88.39. Redistribution subject to AIP 
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ct

]h

]t8
1S da1

dt

x8

a1~ t8! D ]h

]x8
5a1

2 ]

]x8 FKch
]h

]x8G , ~B7!

subject to

]h

]x
~0,t8!5h~1,t8!50, ~B8!

and the initial condition

h~x,0!5AH~12x2!. ~B9!

Evaluating Eq.~B7! at x851 and enforcingh50 there gives
the contact line condition

dR

dt
52S Kca1

]h

]x D U
x851

. ~B10!

This result indicates that Eq.~B7! and h(R,t)50 together
determine the motion of the contact line.

The above mapping is convenient because it fixes
computational domain in the horizontal to 0<x8<1 for all
time during the computation. However, one must also ke
in mind that since the background permeability variation
fixed in physical space and since the gravity current
spreading the horizontal length scale of the permeab
variation in the computational domain 0<x8<1 is actually
getting smaller in time. We need to calculateKc51
1K0 cos(2pRx8/e), where x5x8R(t) at each time step
Therefore, with a fixed horizontal computational grid inx8,
one should have in mind the maximum value ofR in order to
gauge the resolution needed for a given permeability va
tion.

We discretize the evolution equation spatially usi
second-order accurate central differencing withnx grid
points in the horizontal direction. The spatial derivative a
pearing in the evolution equation forR(t) is computed using
a one-sided second-order accurate first derivative form
The time stepping is done implicitly using a backward Eu
method. Here, the evolution equations forh and R, which
take the form

]h

]t
5 f ~x8,h,hx8 ,hx8x8 ,R,Rt!, ~B11!

dR

dt
5 f R~x851,R,hx8!, ~B12!

are discretized in time as

23hj 51
i 1114hj 52

i 112hj 53
i 1150, ~B13!

hj
i 112hj

i 2Dt f i 1150, for j 52,...,nx21, ~B14!

hj 5nx
i 11 50, ~B15!

Ri 112Ri2Dt f R
i 1150, ~B16!

where
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f i 115a1
i 11 dK

dxU
j

i 11

hj
i 11

hj 11
i 112hj 21

i 11

2Dx

1~a1
i 11!2K j

i 11
~hj 11

i 112hj 21
i 11!2

4Dx2

1~a1
i 11!2K j

i 11hj
i 11

hj 11
i 1122hj

i 111hj 21
i 11

Dx2

1xj8 f R
i 11a1

i 11
hj 11

i 112hj 21
i 11

2Dx
, ~B17!

f R
i 1152K j 5nx

i 11 a1
i 11

3hj 5nx
i 11 24hj 5nx21

i 11 1hnx22
i 11

2Dx
, ~B18!

where xj85( j 21)/(nx21), Dx51/(nx21), Dt5T/(nt
21), andnt is the number of temporal points. Note that

K j
i 11511K0 cosS 2pRi 11xj8

e D , ~B19!

dK

dxU
j

i 11

52
2pK0

e
sinS 2pRi 11xj8

e D . ~B20!

Equations~B13!–~B16! represent the symmetry condition
the evolution equation forh, the boundary conditionh(R,t)
50, and the contact line condition~B10!. Thesenx11 ex-
pressions are the residuals that are input into a nonlin
solver hybrd.f~which is based on a modification of the Pow
ell hybrid method, and is available in theMINPACK package
at NETLIB! to find the unknownshj

i 11 ( j 51,...,nx) andRi 11.
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