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ABSTRACT

A phase-field model for the solidification of a pure
material that incorporates convection has recently
been developed [Anderson, McFadden and Wheeler,
Physica D, 135 (2000) pp. 175-194]. This model is a
two-fluid model in which the solid phase is modeled
as a sufficiently viscous fluid. The model allows for
the solid and liquid phases to have different densities
and hence allows for expansion or contraction flows
upon solidification. In this paper we investigate nu-
merically a simplified version of this model by consid;
ering solidification occurring between the two closely-
spaced parallel plates of a Hele-Shaw cell. We assess
two key aspects of the model: (1) the effect of density
differences between the solid and liquid phases dur-
ing dendritic growth and (2) the role played by the
viscosity ratio between the solid and liquid phases.

INTRODUCTION

In order to model the solidification of a pure fluid,
one must generally accomplish at least two things si-
multaneously: (i) determine the thermal field in the
bulk solid and liquid phases and (ii) determine the po-
sition of the interface between these solid and liquid
phases. The classical approach to this problem takes
the point of view that the interface separating the
bulk phases is a mathematical boundary of zero thick-
ness where interfacial conditions are applied. These
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interfacial conditions couple to the thermal transport
equations in the bulk and this system of equations
and boundary conditions provides a means to address
(i) and (ii). In a phase-field model for the solidifica-
tion of a pure fluid, a phase-field variable ¢ which
varies in space and time is introduced to characterize
the phase of the material. In place of the “sharp”
transition from solid to liquid phases that character-
izes tRe classical approach, here the phase-field varies
smoothly but rapidly through an interfacial region.
Additionally, in place of the interfacial jump condi-
tions used in the classical description a partial differ-
ential equation applied over the entire computational
domain governs the evolution of ¢. The effect is a
formulation of the free boundary problem that does
not require the explicit application of interfacial con-
ditions at the unknown location of a phase boundary.
A number of closely related formulations of phase-
field models of a pure material exist!:?? including
derivations*® based on the formalism of irreversible
thermodynamics®.

The above description requires further modifica-
tion if hydrodynamic effects such as buoyancy-driven
convection, externally forced flows or density-change

driven flows are present during solidification. Such

hydrodynamic effects on dendritic growth have been
observed experimentally by Glicksmann et al”-®+® and
can manifest themselves in complex ways, including
the preferential sidebranching on one side of a grow-



ing dendrite depending on flow characteristics. Early
efforts to include the effects of fluid flow in phase-field
models have been given by Caginalp and Jones!®:1.
Using ideas developed in the context of diffuse inter-
face models of hydrodynamics?:'3, Anderson, Mc-
Fadden and Wheeler derived'4 and analyzed®:16 a
phase-field model for the solidification of a pure mate-
rial that includes the effects of fluid flow. Other work
in this area includes that by Beckermann, Karma and
coworkers?718:19,20 and Tonhardt and Amberg?!-2%:
23,24 Related approaches that use front tracking
methods?5:26 are also underway.

In the present paper we solve numerically a sim-
plified version of the model derived in Anderson, Mc-
Fadden and Wheeler!4 using a general purpose adap-
tive finite difference algorithm (VLUGR)?7. These
calculations directly extend the work by Braun et
al.2%:29 who calculated dendritic growth of a pure
material into an undercooled melt phase without fluid
flow. Earlier calculations on a model closely related
to the one used here have also been performed.3®

GOVERNING EQUATIONS

We take as our starting point the anisotropic form
of the dimensionless equations given in Anderson,
McFadden and Wheeler!®. These equations are based
‘on a formulation that includes gradient and double
well terms with respect to the energy but not with
respect to the entropy. These equations are
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Here p is the fluid density assumed to be a function
of the phase field ¢ [see equation (8a)), @ is the fluid
velocity, p is the pressure, T is the temperature and
T = p(@)[Va+(ViE)T — 2(V-@)I] is the viscous stress
tensor, where u(@) is the viscosity assumed to be a

function ¢ [see equation (8b)]. Anisotropy is incor-
porated through the generalized {-vector E and the
anisotropic surface energy function I'(¢).3!+32:26 Here
Pr = vy /ky is the Prandtl number which relates the
kinematic viscosity in the liquid to the thermal dif-
fusivity in the liquid, ¥ is a dimensionless measure
of the surface energy, ¢ is a dimensionless interface
thickness, 7 is an interface mobility parameter, A is a
latent heat parameter which can also be interpreted
as the ratio between interface thickness and capillary
length scales, é is a double-well parameter associated
with the internal energy, S = L/cT)y is a Stefan num-
ber where L is the latent heat per unit mass and ¢
is the heat capacity per unit mass, and p* is a di-
mensionless reference pressure. The function Q(¢)
represents the thermal conductivity in the material.
The functions r(¢) and Hn,(¢) are defined in the text
after equation (8). We refer the reader to Anderson,
McFadden and Wheeler!® for more details regarding
these equations.

We further simplify the above model by making
the following approximations and assumptions. First,
we consider only the case of equal thermal conductiv-
ities in the solid and liquid phases so that Q(¢) = 1.
Second, we neglect the classical and non-classical dis-
sipation terms in the energy equation (1d). Third,
we consider § = 0, which removes the double-well
function in the energy equation. Fourth, we neglect
the pressure effects associated with p* and p in the .
energy and phase-field equations. The result of these
assumptions is the following reduced set of equations
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As a final simplification of the above model we
shall examine the equations in a Hele-Shaw geometry
so that the length scale associated with the narrow
gap in the z direction is much smaller than the in-
plane length scales associated with the z and y direc-
tions. We take the ratio of gap thickness to in-plane
length scale to be 6y < 1.

We define Z = 2/8y so that 8/8z = (8/02Z)/dn,



expand the independent variables in powers of 6y and
consider the limit gy — 0 with all other parameters
held fixed. Specifically, we take

¢ = do+0pd +ud2+..., (3a)
T = To+6éuTh+64Ta+..., (3b)
p = %[poﬁypw---], (3¢)
w = w0+5yw1+6§{w2+..., (3d)
g, = @0 +epal+..., (3¢)

where @ = (@, w) = (u,v,w). Note that the pressure
must be rescaled to balance the viscous terms in the
momentum equation.

The leading order equations show that ¢o, To and
po are independent of Z and that the leading-order
vertical flow wo vanishes. The in-plane velocity is

=(0)

" 2Pr u(¢o)

Consequently, the vertically-averaged flow is driven
by horizontal pressure gradients
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Note that the capillary term in the momentum equa-
tion does not contribute at this order. Equations for
the leading-order quantities can be obtained through
averaging of the phase-field equation, energy equa-
tion and continuity equation, respectively. We in-
troduce a rescaled temperature g = To/Se Where
Soo = ¢(Ta — Teo)/ L is the degree of undercooling in
the liquid, T is a dimensional far-field temperature
and T is the equilibrium melting temperature of the
material. This leads to our computational model
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which is a set of three equations for the phase field
variable, temperature and pressure.

Anisotropy enters this simplified model through
the phase-field equation only. We shall follow Braun
and Murray?® and use four-fold anisotropy via the
function (V) = |V|(1 + bcos48) where tanﬁ =
¢,/$ and bis a constant parameter with 0 < b < =
The anisotropic term in the phase-field equation is
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where tan 8o = ¢oy/Poz-
The density and viscosity functions are taken to
have the form

o@) = 1+(ps/os—Dr(d),
w(@ = 1+ (ps/pL—1r(d),

where the interpolation function has the form r(¢) =
#%(10 — 15¢ + 6¢%). Finally, we define the double-
well function Hm(4) by p(8)Hm(4) = 34*(1 — ¢)°.
In the absence of fluid fiow where p(¢) = u(é) = 1,
this model reduces to that of Braun and Murray”. A
closely related model has been examined previously*
for the case of viscosity ratio us/pL = 1.

Y NUMERICAL COMPUTATION

In the calculations, the computational domain is
a rectangular box of dimensions Xy and Y in the x
and y directions, respectively. We consider three dif-
ferent sets of boundary conditions applied at these
boundaries corresponding to cases (i), (ii) and (iii)
described in the caption of Table 1. In cases (i) and
(ii) there is no externally-forced flow, only flows due
to contraction or expansion upon solidification are
present. In case (iii) we impose via a pressure differ-
ence a uniform flow from left to right in the computa-
tional domain. The initial conditions correspond to
a spherical solid particle with a four-fold perturba-
tion centered at (X.,Y.). The liquid phase (¢o = 0)
is initially undercooled 8y = —1 and the solid phase
(o = 1) has a temperature of 6 = 0. We follow
Braun and Murray?® and use ‘smoothed’ versions of
these values as the initial conditions. Additionally,
we initialize the pressure by setting pp = 1 every-
where. In cases (i) and (ii) we use (X, Y:) = (0,0)

(8a)
(8b)



| box (be) [ t | ps/pr | us/ur | 1/Pr |
Al 3xL() |050] 009 7 | 12
B[ 3x1() |050] 1.0 3 12
Cl 3 () |050] 11 3 12
D | 3x1 (i) | 050 0.0 ) 12
E | 3x1 (i) | 0.50 0.9 1 1.2
F| 3x3(G) |050] 09 112
G 3x1 Gu) [ 002 1.0 5 12
H | 3x1 (u) | 002 1.0 5 | 600
I | 3x1 (iii) | 0.02 1.0 5 1200
T [ 31 (@) [ 002 1.0 52400
K | 3x1 (i) | 0.02 1.0 80 2400
L | 3x1 (iii) | 0.02 1.0 160 2400
M | 3x1 (i) [002] 1.0 | 320 | 2400

Table 1: In these calculations € = 0.005, b = 0.015,
A=0.5,1/7r = 0.1 and Sc = 0.5. The boundary
conditions correspond to Neumann conditions on all
external boundaries for ¢o, 6o and pp except (i): po =
1 at the right and upper boundaries, (ii): po = 1
at the right boundary, and (iii) po = 1 at the right
boundary and py = 0 at the left boundary.

which takes advantage of the left/right and up/down
symmetry of the growing dendrite. In case (iii) we
use (X.,Y:) = (3Xo,0) where the imposed flow al-
lows only up/down symmetry.

Dendrites with expansion or contraction flow:

In the first set of calculations we examine the ef-
fects of density change on the growth of a dendrite.
The initial particle is centered at (X.,Y.) = (0,0)
and has an average dimensionless radius of 0.1.

Figure 1 shows a dendrite with p = 1.1 (contrac-
tion flow) in the upper diagram and a dendrite with
p = 0.9 (expansion flow) in the lower diagram (whigh
has been reflected about the axis y = 0 to facilitate
a comparison between the two cases). At this stage,
the primary growth is associated with the tip growing
in the z direction. There is a pressure minimum with
p =~ 0.1 (maximum with p = 1.8) for the dendrite
with p = 1.1 (p = 0.9) driving a flow towards (away
from) the growing tip. These pressure extremes are in
part due to the fixed pressure condition at y = 1 and
the proximity of the dendrite to this wall. Figure 2
shows the position of this tip and its temperature as
a function of time for these two calculations and also
that for p = 1. We see that the dendrite correspond-
ing to the expansion flow (p < 1) grows faster than
its counterpart with contraction flow (p > 1). The in-
crease in velocity with decreasing p is comparable to
the increase in Peclet number [Pe = RV/2x, where R

is a tip radius, V is a tip velocity and « is the thermal
diffusivity] with decreasing p that was found in ana-
lytical results of dendritic growth with expansion or
contraction flow obtained by McFadden and Coriell®®
(see their figure 4).

In figure 3 we show the growth of two dendrites
(cases D and E) with p = 0.9 (expansion flow) for
the boundary conditions in case (ii). The Neumann
boundary conditions on both upper and lower bound-
aries may be more representative of a symmetric ar-
ray of dendrites growing in the z direction than the
dendrites in figure 1. In the upper diagram the vis-
cosity ratio is u = 2 while the lower diagram shows
the case ¢ = 1. In each case we observe a compression
of the pressure contours in the liquid in front of the
tip and in contrast to the results in figure 1 do not
observe a local pressure minimum or maximum. The
dendrite with u = 2 (upper diagram) grows slightly
slower than that for 4 = 1. In either case, there is
very little fluid flow generated in the “solid” phase
despite the low viscosity ratios. The pressure varies
from a dimensionless value of unity in the far-field
liquid (z = 3) to a value near 4 (when u = 2) and 3.5
(when u = 1) near z = 0.

In figure 4 a dendrite (case F) with p = 0.9 (ex-
pansion flow) is computed in a larger domain. One
can observe the flow generated at each of the grow-
ing tips in a symmetric fashion unlike figure 1. The
pressure varies from a dimensionless value of unity in
the far-field liquid boundaries to a value near 2.2 in-
side the solid phase. There is a tendency for the flow
far from the tip to be concentrated near the upper
left and lower right regions of the domain and for a
rather weak flow in the upper right region. This is
a consequence of the fixed pressure boundary condi-
tions which lead to a nearly uniform pressure in the
upper right corner.

Dendrites in a uniform fiow field:

Here we examine dendrites growing in the pres-
ence of a uniform flow field. The initial particle is
centered at (X,,Y.) = (1.5,0) and has an average
dimensionless radius of 0.1.

In figure 5 four cases (G-J in Table 1) are shown in
which the growing dendrite experiences an imposed
uniform flow from left to right. All parameters are
held fixed in the four diagrams with the exception
of 1/ Pr which increases from a value of 1.2 (top) to
2400 (bottom). Recall that Pr = vy /& is the ratio of
kinematic viscosity to liquid thermal diffusivity. In
our model, increasing 1/Pr effectively amplifies the
effect of the velocity field. When 1/Pr = 1.2 the den-
drite grows nearly symmetrically in the horizontal di-
rection (the corresponding thermal field, not shown,
also appears nearly symmetric). However, as 1/Pr is



increased a distortion of the growing dendrite can be
observed. This distortion is both a direct and indi-
rect consequence of the flow. First, there is a direct
effect on the shape of the solid through a hydrody-
namic (viscous) distortion. This distortion is non-
physical for a true solid dendrite. Second, there is an
indirect thermal effect on the growth of the particle
due to a flow-induced nonuniformity of the thermal
gradient surrounding the particle. For the case with
1/Pr = 2400 translation, or advection, of the parti-
cle can also be observed. This sequence illustrates a
limitation of the present two-fluid model to capture
solid-body translation. A viscosity ratio of p = 5 for
this particular flow configuration is not sufficient to
maintain a solid-like dendrite. In figure 6 we show
how these deficiencies can be overcome by increasing
the viscosity ratio.

In figure 6 four cases (J-M in Table 1) are shown
in which the growing dendrite again experiences an
imposed uniform flow from left to right. Here all pa-

- rameters, including Pr, are fixed except for the vis-
cosity ratio, which is increased from p = 5 to u = 320
(top to bottom). A comparison shows that viscous
distortion of the solid is eliminated as the viscosity
ratio is increased. With a sufficiently large viscosity
ratio the true growth asymmetry due to the flow can
be observed. The thermal gradient in the liquid just
to the left of the dendrite (upstream side) is amplified
by the flow while that on the right (downstream side)
is diminished; the consequence is an asymmetrically
growing dendrite. Note that the increase of viscosity
also eliminates the translation of the particle; this is
consequence of the Hele-Shaw geometry in which the
material (solid or liquid) must obey a no-slip condi-
tion on the confining plates. It is worth emphasizing
that in the original model (before the Hele-Shaw ge-
ometry is considered) solid body motion is obtained
as the viscosity ratio is increased®. ’

With larger values of 1/Pr than those shown in
figure 5 the particle can be completely swept away by
the flow in the calculation. However, as demonstrated
in Figure 6 using a sufficiently large viscosity ratio
and the Hele-Shaw geometry in conjunction with a
no-slip condition on the confining plates, the velocity
in the solid approaches zero.

CONCLUSIONS

We have examined the effect of fluid flow on den-
dritic growth of a pure material into an undercooled

melt using a two-fluid model in which the solid phase -

is modeled as a sufficiently viscous fluid. We have
examined fluid flow generated by a volume change
upon solidification and have observed the resulting
expansion (contraction) flows when the solid is less

(41}

(more) dense than the liquid. The pressure field as-
sociated with this flow generates relatively small fluid
motion in the solid phase even for small viscosity ra-
tios (us/prL = 1 or 2). We have also examined the
effect of a uniform flow past a growing dendrite. In
this configuration, strong external flows can signifi-
cantly distort the shape of the “solid” if the viscosity
ratio is not taken sufficiently large. However, with the
viscosity ratio sufficiently large, the solid phase can
be successfully approximated by a viscous fluid. The
Hele-Shaw approximation used in these calculations
does not allow advection of solid particles attached to
the confining plates and consequently no realistic ad-
vection of the dendrites was observed. However, the
two-fluid model of the solid-liquid system is expected
to allow solid-body motion in standard two or three
dimensional calculations.
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Figure 2: The tip position (in z direction) and tip temperature as a function of time for the
dendrites in cases A, B and C. There is an expansion-type flow for the dendrite with p = 0.9
and a contraction-type flow for the dendrite with p = 1.1. The tip radius (not shown) is
larger for the dendrite with p = 0.9 and smaller for the dendrite with p = 1.1.
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Figure 3: This figure shows the dendrites for cases D (upper) and E (lower).
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Figure 4: This figure shows the dendrite for case F. The colorbar indicates the value of ¢.



Figure 5: This figure shows dendrites for cases G-J. 1/Pr increases from top to bottom.
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Figure 6: This figure shows dendrites for cases J-M. The value of p is 5, 80, 160 and 320
from top to bottom.
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