
Physica D 151 (2001) 305–331

A phase-field model with convection: sharp-interface asymptotics

D.M. Anderson a,∗, G.B. McFadden b, A.A. Wheeler c

a Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA
b Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8910, USA

c Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Received 2 October 2000; received in revised form 19 January 2001; accepted 29 January 2001
Communicated by C.K.R.T. Jones

Abstract

We have previously developed a phase-field model of solidification that includes convection in the melt [Physica D 135
(2000) 175]. This model represents the two phases as viscous liquids, where the putative solid phase has a viscosity much
larger than the liquid phase. The object of this paper is to examine in detail a simplified version of the governing equations
for this phase-field model in the sharp-interface limit to derive the interfacial conditions of the associated free-boundary
problem. The importance of this analysis is that it reveals the underlying physical mechanisms built into the phase-field
model in the context of a free-boundary problem and, in turn, provides a further validation of the model. In equilibrium,
we recover the standard interfacial conditions including the Young–Laplace and Clausius–Clapeyron equations that relate
the temperature to the pressures in the two bulk phases, the interface curvature and material parameters. In nonequilibrium,
we identify boundary conditions associated with classical hydrodynamics, such as the normal mass flux condition, the
no-slip condition and stress balances. We also identify the heat flux balance condition which is modified to account for the
flow, interface curvature and density difference between the bulk phases. The interface temperature satisfies a nonequilibrium
version of the Clausius–Clapeyron relation which includes the effects of curvature, attachment kinetics and viscous dissipation.
© 2001 Published by Elsevier Science B.V.
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1. Introduction

In the recent paper [1] (AMW), we derived a phase-field model that describes the solidification of a pure material
when fluid motion is present. The motivation for developing and studying such a model follows from experimental
observations and theoretical analyses which show that fluid motion in the melt can have a profound effect on the
morphology of the solid–liquid interface [2–6]. In an industrial setting morphological and hydrodynamic instabilities
can have a detrimental effect on both the control of the process and the quality of the solidified product. However,
even when careful attempts are made to suppress fluid motion by eliminating external forces such as gravity, it
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is not always possible to eliminate all fluid motion. For example, expansion or contraction flow is present during
solidification when the solid and liquid densities of the material are different. Furthermore, even in equilibrium
where fluid motion is absent, the presence of a density difference between the solid and liquid phases can have
thermodynamic consequences.

Typical phase-field models for a pure material without convection [7–10] introduce a phase-field variable φ(�x, t),
which is a function of position �x and time t , to distinguish the solid from the liquid. This is in contrast to diffuse
interface descriptions of a fluid near its critical point, where density is a more natural order parameter [11,12]. The
phase-field governing equations have been derived in a thermodynamically consistent way by Penrose and Fife
and coworkers [10,13,14] following the formalism of irreversible thermodynamics [15]. AMW followed these same
principles to derive their phase-field model that includes convection. They retained the use of the phase-field variable
φ and allowed the density of each phase to be specified independently. The model was developed to describe fluid
motion that is incompressible in the bulk phases. Therefore, in order to account for expansion or contraction flows
that are driven from solidification at the solid–liquid interface they incorporated the ideas of quasi-incompressibility
first used in a diffuse-interface description of a binary fluid by Lowengrub and Truskinovsky [16].

AMW treated both phases as fluids, although they examined the case where one phase has a sufficiently large
viscosity, so that it may be interpreted as an approximation to a solid phase. In many solidification applications, a
fluid model is used for the thermodynamic description of the solid phase, in that the elastic properties of the solid are
ignored. AMW also assumed that the phase transition was first-order and had an anisotropic surface energy, which
is unconventional for a fluid–fluid system, but is consistent with our primary intention of modeling a solid–liquid
system.

There have been a number of other phase-field type descriptions of solidification that include convection in the
melt [17–21]. The AMW model (see also Ref. [22]) incorporates in a thermodynamically consistent way the density
effect in a phase-field description of solidification as well as the appropriate form of the Korteweg stress term in the
momentum equation.

The object of this paper is to examine in detail, the governing equations for the phase-field convection model
of AMW (see also Ref. [22]) in the sharp-interface limit to derive the interfacial conditions of the associated
free-boundary problem. The importance of this analysis is that it reveals the underlying physical mechanisms built
into the phase-field model in the context of a free-boundary problem and, in turn, provides a further validation of
the model. To date sharp-interface analyses of phase-field models have concentrated on situations in which flow is
not present and the densities of both phases are the same [23–30]. The version of the AMW model without fluid
flow has recently been examined in detail [30]. Therefore, the focus in the present work is on the effects associated
with density differences between the bulk phases as well as fluid flow and how they manifest themselves in the
sharp-interface limit. We follow the so-called “classical” sharp-interface analysis and refer the reader to [26–30]
for other possible distinguished limits and related issues.

The paper is organized as follows. The governing equations are described briefly in Section 2 and their dimen-
sionless forms used in the present analysis are given in Section 3. The sharp-interface analysis is first examined for
the equilibrium case in Section 4. Section 5 discusses scaling issues associated with the nonequilibrium version of
the equations which are then analyzed in two different limits. Conclusions are given in Section 6.

2. Governing equations

In the absence of convection, phase-field models can be derived by extending the formalism of classical irreversible
thermodynamics [15] to nonclassical systems whose thermodynamic potentials involve square-gradient energy terms
[10,13,14]. AMW built on these ideas to develop a phase-field model that incorporates convection. The governing
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equations of this model which describe convection, heat transfer and solidification of a pure material are

Dρ

Dt
= −ρ∇ · �u, (1a)

ρ
D�u
Dt

= ∇ ·mmm, (1b)

M
Dφ

Dt
= ε2

F (T )∇ · [Γ (∇φ)�ξ ] − ρ ∂g
∂φ
, (1c)

ρ
De

Dt
= ∇ · [k(φ)∇T ] + ε2

E∇ · [Γ (∇φ)�ξ ]
Dφ

Dt
+mmmS : ∇�u, (1d)

where ρ is the density, �u the velocity,mmm the stress tensor, φ the phase-field variable (we adopt the convention that
φ = 0 denotes the liquid phase and φ = 1 denotes the solid phase), and T the temperature. Additionally, M is a
constant that represents the mobility of the interface, and εF the Helmholtz gradient energy coefficient given by
ε2
F (T ) = ε2

E + T ε2
S , where εE and εS are the gradient energy and entropy coefficients which are assumed to be

constants. Further, k(φ) is the thermal conductivity, and g(T , p, φ) = e−Ts+p/ρ is the Gibbs free energy per unit
mass, where e is the internal energy per unit mass, s the entropy per unit mass and p the pressure. The quantities
mmm andmmmS are given by

mmm = [−p + 1
2ε

2
F (T )Γ

2(∇φ)]III − ε2
F (T )Γ (∇φ)�ξ ⊗ ∇φ + τττ , (2a)

mmmS = [−p + 1
2T ε

2
SΓ

2(∇φ)]III − T ε2
SΓ (∇φ)�ξ ⊗ ∇φ + τττ , (2b)

where τττ is the viscous stress tensor

τττ = µ(φ)[∇�u+ (∇�u)T − 2
3 (∇ · �u)III ], (3)

and µ(φ) is the viscosity which is a function of φ given by

µ(φ) = µSr(φ)+ µL[1 − r(φ)], (4)

whereµS andµL are the viscosities in the bulk solid and liquid phases, respectively. The function r(φ) is monotonic
increasing with r(0) = 0 and r(1) = 1; suitable choices include r(φ) = φ or r(φ) = φ2(3 − 2φ). Γ (∇φ) is a
homogeneous function of degree unity that permits a general anisotropic surface energy of the solid–liquid interface,
and �ξ is the generalized ξ -vector whose components are defined by ξj = ∂Γ (∇φ)/∂φ,j , where φ,j is the j th
component of ∇φ, see [31,32]. We will henceforth confine our attention to case of isotropic surface energies and
set Γ (∇φ) = |∇φ|, in which case �ξ = ∇φ/|∇φ|.

The density of the two bulk phases may be different, and we shall assume that ρ depends on φ alone,

ρ(φ) = ρSr(φ)+ ρL[1 − r(φ)], (5)

where ρS and ρL are the densities in the bulk solid and liquid phases, respectively. This assumption, in which the
density does not depend on temperature or pressure, known as quasi-incompressibility, places a constraint on the
form of the underlying thermodynamic potentials [16] and requires that the underlying Gibbs free energy density
be given by

g(T , p, φ) = g0(T , φ)+ p − pR

ρ(φ)
, (6)
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where pR is a reference pressure associated with an isothermal stationary planar interface at melting temperature
TM. We take g0(T , φ) to have the form

g0(T , φ) =
[
e0 − cTM − r(φ)L− 1

4aS
Hm(φ)

](
1 − T

TM

)
− cT ln

(
T

TM

)
+ 1

4a
Hm(φ), (7)

in which case the corresponding expressions for the internal energy and entropy densities are

e = e0 + c(T − TM)− r(φ)L+ 1

4aE
Hm(φ)− pR

ρ(φ)
, (8a)

s = 1

TM

[
e0 − r(φ)L− 1

4aS
Hm(φ)

]
+ c ln

(
T

TM

)
, (8b)

where 1/aE = 1/a − 1/aS . Here 1/a is the height of the double-well of the Gibbs free energy density at T = TM,
and 1/aE and 1/aS are the heights of the double wells in the internal energy and entropy densities, respectively.
The quantity e0 is a constant reference energy and both the heat capacity per unit mass c and the latent heat per unit
mass L are assumed to be constant.

The double-well functionHm(φ) appears in the “per unit mass” quantity g0(T , φ). The analog “per unit volume”
quantity associated with ρ(φ)g0(T , φ) is ρ(φ)Hm(φ) ≡ Hv(φ). A common form of a double-well potential is the
function φ2(1 − φ)2, and in standard phase-field models that do not include convection it is usually associated
with a “per unit volume” quantity (e.g. [10]). In applications, in which the density of the two phases are constant
and equal, the per unit mass and the per unit volume specification of the double-well are equivalent. However, in
the present situation the bulk densities are not necessarily equal and therefore we shall examine the merits of the
per unit mass form Hm(φ) = φ2(1 − φ)2 and the per unit volume form Hv(φ) = ρLφ

2(1 − φ)2 (in which case
Hm(φ) = ρLφ

2(1 − φ)2/ρ(φ)).
The one-dimensional solution of the governing equations for an isothermal system at the melting temperature TM

with equal solid and liquid densities (ρS = ρL) is given by

φ = 1

2

[
1 − tanh

( z
2l

)]
, (9)

p = pR − 3γ0

16l
sech4

( z
2l

)
. (10)

The interface thickness, l, and surface energy γ0, are related to the phase-field parameters by

l = εF (TM)

√
2a

ρL
, γ0 = εF (TM)

6

√
ρL

2a
. (11)

It is also convenient to define an associated capillary length by lc = TMγ0/(ρL[L2/c]).

3. Dimensionless governing equations

We nondimensionalise the governing equations by introducing a reference length scale l0, which is a typical
length scale associated with the interface shape, such as a dendrite tip radius. The reference scales for time, velocity,
pressure and stress are based on thermal diffusion in the liquid. The temperature scale is L/c and the density,
viscosity and thermal conductivity are scaled with their values in the bulk liquid. The dimensionless quantities,
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denoted by primes, are related to their dimensional counterparts by

�x = l0 �x′, t = l20

κL
t ′, �u = κL

l0
�u′, mmm = ρLκ

2
L

l20

mmm′, p = pR + ρLκ
2
L

l20

p′, (12)

T = TM + L

c
θ ′, ρ = ρLρ

′, µ = µLµ
′, k = kLk

′, (13)

where κL is the thermal diffusivity in the bulk liquid phase. The dimensionless governing equations are

∂ρ

∂t
+ ∇ · (ρ �u) = 0, (14)

ρ
D�u
Dt

= ∇ ·mmm, (15)

ε2τ
Dφ

Dt
= ε2(1 + αθ)∇2φ − ρ

[
1

2
(1 + βθ)H ′

m(φ)+ λθr ′(φ)+
ε

γ̃
p
∂

∂φ

(
1

ρ

)]
, (16)

ρ
De

Dt
= ∇ · [Q(φ)∇θ ] + ε2ν

Dφ

Dt
∇2φ +H, (17)

where, for simplicity, we have omitted the primes on the dimensionless variables. The dimensionless internal energy
density, entropy and Gibbs free energy are given by

e = θ − r(φ)+ δ

2
Hm(φ)− εSp.

λγ̃

1

ρ
, (18)

s = λe′0 − λr(φ)− 1

2
βHm(φ)+ λ

S
ln(1 + Sθ), (19)

g = −λ(e′0 − S−1)θ − λ

S2
(1 + Sθ) ln(1 + Sθ)+ 1

2
Hm(φ)+ λθr(φ)+ ε

γ̃

p

ρ(φ)
, (20)

where e′0 = e0/L. Note that g is scaled with 1/(2a), s with c/(2aL) and e − e0 with L. The dimensionless tensors
are

mmm = σσσp + (1 + αθ)σσσφ + Prτττ , (21a)

mmmS = σσσp + α(θ + S−1)σσσφ + Prτττ , (21b)

where

σσσp = −(p + p.)III , (22a)

σσσφ = γ̃ ε[ 1
2 |∇φ|2III − ∇φ ⊗ ∇φ], (22b)

τττ = µ(φ)[∇�u+ (∇�u)T − 2
3 (∇ · �u)III ]. (22c)

The source term in the energy equation is

H = εS

λγ̃
mmmS : ∇�u = εS

λγ̃
[−(p + p.)III + α(θ + S−1)σσσφ + Prτττ ] : ∇�u. (23)

The dimensionless parameters are given by

α = Lε2
S

cε2
F (TM)

, β = aL

aScTM
, δ = 1

2aEL
, ν = ε2

E

l2LρL
= ε2

E

2aLε2
F (TM)

, (24)
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ε = l

l0
, λ = l

6lc
, p. = pRl

2
0

ρLκ
2
L

, S = L

cTM
, Pr = νL

κL
, (25)

γ̃ = 6l0lcL2

κ2
LcTM

= 6l0γ0

ρLκ
2
L

, τ = κLMTMc

6ρLllcL2
= [κL/lc]

[L/c]µmob
, (26)

where νL is the kinematic viscosity of the liquid phase and

Q(φ) = 1 +
(
kS

kL
− 1

)
r(φ), µ(φ) = 1 +

(
µS

µL
− 1

)
r(φ), ρ(φ) = 1 +

(
ρS

ρL
− 1

)
r(φ). (27)

We note that the parameter γ̃ is related to the capillary (or crispation) number Ca by γ̃ = 6Pr/Ca, where Ca =
µLκL/l0γ0. Additionally, if one follows the thermodynamic relationships between the gradient coefficients and the
double-well heights, namely, ε2

F (TM) = ε2
E + TMε

2
S and 1/aE = (1/a) − (1/aS), we find, as in [30] that α, β, δ

and ν are not independent parameters but rather are related through

β − α = λ(ν − δ), (28a)

α = S − λν. (28b)

In the absence of flow these equations reduce to the generalized phase-field equations recently studied in Refs.
[30,33]. We observe that ε is the ratio of the interface thickness l to the reference length scale l0 and in the analysis
that follows we shall consider the sharp-interface limit ε → 0. The leading-order free-boundary problem that
emerges from a sharp-interface limit of these equations depends on the distinguished limit that is taken [23,27,30].
The particular sharp-interface limit in which λ = O(1) as ε → 0, where the interface thickness is comparable to
the capillary length, is the so-called ‘thin interface’ limit studied by Karma and Rappel [27]. The case λ = O(ε) as
ε → 0, where the interface thickness is much smaller than the capillary length, is the so-called ‘classical’ limit.

In this paper, we consider a classical sharp-interface limit for the simplified model where α = β = 0 and
ν = δ = S/λ. Here the square-gradient and double-well terms are present in the internal energy functional but not
in the entropy functional. Notice that since λ = O(ε) in the classical limit, we have ν = δ = S/λ = O(ε−1); these
terms all appear in the energy equation. We refer the reader to [30], where the more general case of nonzero α, β,
δ and ν is examined without fluid flow. The dimensionless governing equations in this case are

∂ρ

∂t
+ ∇ · (ρ �u) = 0, (29)

ρ
D�u
Dt

= ∇ ·mmm, (30)

ε2τ
Dφ

Dt
= ε2∇2φ − ρ

[
1

2
H ′

m(φ)+ λθr ′(φ)+
ε

γ̃
p
∂

∂φ

(
1

ρ

)]
, (31)

ρ
De

Dt
= ∇ · [Q(φ)∇θ ] + ε2ν

Dφ

Dt
∇2φ +H, (32)

wheremmm andH are given by Eqs. (21a) and (23) with α = 0.

4. Equilibrium: sharp-interface analysis

In this section, we conduct a classical sharp-interface analysis of the equilibrium version of Eqs. (29)–(32). Here
the fluid velocity �u and all time derivatives are zero. Additionally, the energy equation admits an isothermal solution
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where the temperature is denoted by θ . In the classical limit, ε → 0 with λ = εΛ and Λ = O(1), thin interfacial
regions of thicknessO(ε) develop in φ. Away from these regions the system is in the solid or liquid bulk phase and
we express the solution in these so-called outer regions as regular perturbation series in powers of ε. We write

p(ζ 1, ζ 2, ζ 3) = p0(ζ
1, ζ 2, ζ 3)+ εp1(ζ

1, ζ 2, ζ 3)+ · · · , (33a)

φ(ζ 1, ζ 2, ζ 3) = φ0(ζ
1, ζ 2, ζ 3)+ εφ1(ζ

1, ζ 2, ζ 3)+ · · · , (33b)

where ζ 1, ζ 2, ζ 3 are coordinates locally body-fitted to the mean position of the interface, given by the surface
φ = 1

2 . Here ζ 1, ζ 2 are surface coordinates measuring distance along the principal directions, and ζ 3 is a coordinate
measuring distance in the direction normal to the surface φ = 1

2 , which may also be expressed by ζ 3 = 0. We adopt
the convention that ζ 3 is positive in the liquid and negative in the solid. Further details of the differential geometry
of body-fitted coordinates are given in Appendix A.

The phase-field equation in the outer regions gives that φ0 = 0 in the liquid and φ0 = 1 in the solid. The
momentum equation ∇ ·mmm = 0 in the outer region requires that p0(ζ

1, ζ 2, ζ 3) is constant in each phase. We put

pS
0 = p.S − p., pL

0 = p.L − p., (34)

where p.S = pSl
2
0/(ρLκ

2
L), p

.
L = pLl

2
0/(ρLκ

2
L), and pS and pL are the dimensional pressures in the bulk solid and

liquid phases, respectively.
We now consider the solution in the interfacial layer. We observe from the one-dimensional solution (10) that the

dimensional pressure in the interface is characterized by γ0/l, and hence the dimensionless pressure in the interface
scales as (γ0/l)/(ρLκ

2
L/l

2
0) = γ̃ /(6ε), where γ̃ = O(1). Consequently, we write the inner expansions as

P(ζ 1, ζ 2, ζ ) = 1

ε
[P0(ζ

1, ζ 2, ζ )+ εP1(ζ
1, ζ 2, ζ )+ · · · ], (35a)

Φ(ζ 1, ζ 2, ζ ) = Φ0(ζ
1, ζ 2, ζ )+ εΦ1(ζ

1, ζ 2, ζ )+ · · · . (35b)

Here and below we use capital letters to denote the inner variables and ζ = ζ 3/ε is the normal coordinate scaled to
the thickness of the interfacial layer. Equilibrium conditions follow from the momentum and phase-field equations
as shown below.

4.1. Momentum equation

We examine the first two orders of the momentum equation O(ε−1) and O(1) to find that

P0 = c0(ζ
1, ζ 2)− 1

2
γ̃

(
∂Φ0

∂ζ

)2

, (36a)

P1 = c1(ζ
1, ζ 2)− p. + γ̃ (K1 +K2)

∫ ζ

−∞

(
∂Φ0

∂ζ

)2

dζ − γ̃ ∂Φ0

∂ζ

∂Φ1

∂ζ
, (36b)

where c0 and c1 are independent of ζ .
Matching the inner and outer pressures requires

0 = lim
ζ→±∞

{
p0(�r0)− 1

ε
(P0 + εP1)+ · · ·

}
, (37)
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and gives c0(ζ
1, ζ 2) = 0 and c1(ζ

1, ζ 2) = p.S. Additionally,

p0|LS = γ̃ (K1 +K2)

∫ +∞

−∞

(
∂Φ0

∂ζ

)2

dζ, (38)

which relates the jump in the outer pressure across the interface to the interface curvature. We identify the integral
factor below after treating the phase-field equation.

4.2. Phase-field equation

The O(1) inner problem for the phase-field equation can be written as

0 = ∂2Φ0

∂ζ 2
+ 1

2

∂

∂φ

[
ln

(
1

ρ(Φ0)

)](
∂Φ0

∂ζ

)2

− 1

2
ρ(Φ0)H

′
m(Φ0), (39)

where we have made use of the expression (36a) for P0. This equation can be simplified if we first multiply through
by the integrating factor (1/ρ(Φ0))

1/2 to obtain

0 = ∂

∂ζ

[(
1

ρ(Φ0)

)1/2
∂Φ0

∂ζ

]
−
(

1

ρ(Φ0)

)1/2
ρ(Φ0)H

′
m(Φ0)

2
, (40)

and then multiply this result by (1/ρ(Φ0))
1/2∂Φ0/∂ζ . Integration then gives the first integral

0 =
(
∂Φ0

∂ζ

)2

− ρ(Φ0)Hm(Φ0). (41)

The O(ε) inner phase-field problem can be expressed as

∂2Φ1

∂ζ 2
+ ∂

∂φ

[
ln

(
1

ρ(Φ0)

)]
∂Φ0

∂ζ

∂Φ1

∂ζ
−
{

1

2

∂

∂φ
[ρ(Φ0)H

′
m(Φ0)] + ∂2

∂φ2

[
ln

(
1

ρ(Φ0)

)]
P0

γ̃

}
Φ1 = R1,

(42)

where

R1 = (K1 +K2)
∂Φ0

∂ζ
+Λθρ(Φ0)r

′(Φ0)+
(p.S − p.)

γ̃

∂

∂φ

[
ln

(
1

ρ(Φ0)

)]

+(K1 +K2)
∂

∂φ

[
ln

(
1

ρ(Φ0)

)]∫ ζ

−∞

(
∂Φ0

∂ζ

)2

dζ, (43)

and we have made use of Eq. (36b) for P1. Eq. (42) may be manipulated to obtain the solvability condition

0 =
∫ +∞

−∞
1

ρ(Φ0)

∂Φ0

∂ζ
R1 dζ, (44)

which can be simplified to obtain the Clausius–Clapeyron relation

0 = −Λθ + (p.S − p.)
γ̃

(
1 − ρL

ρS

)
+ (K1 +K2)

∫ +∞

−∞

(
∂Φ0

∂ζ

)2

dζ. (45)

This equation expresses temperature in terms of the bulk pressure and interface curvature.
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In dimensional form, the pressure jump condition (38) and the curvature-modified Clausius–Clapeyron relation
(45) are

p|LS = γ (K1 +K2), (46a)

0 = L

(
1 − T

TM

)
+ (pS − pR)

(
1

ρL
− 1

ρS

)
+ γ

ρL
(K1 +K2), (46b)

where γ is the surface tension (or excess Kramers potential) defined in Appendix B as

γ = 6γ0

∫ +∞

−∞

(
∂Φ0

∂ζ

)2

dζ = 6γ0

∫ 1

0

√
ρ(φ)Hm(φ) dφ, (47)

andΦ0 is determined by Eq. (41). Eqs. (46a) and (46b) determine the liquid pressure pL and the temperature of the
system T in terms of the solid pressure pS, the interface curvature, and the material parameters.

The value of γ is not in general equal to γ0 defined by Eq. (11) but rather depends on the density ratio (ρS/ρL)

and the form of ρ(φ)Hm(φ). When ρ(φ)Hm(φ) = φ2(1 − φ)2 (so that the double-well potential is associated with
a “per unit volume” quantity, see Eq. (7)) Eq. (41) admits the standard hyperbolic tangent profile and the integral
in Eq. (47) evaluates to 1

6 , so that γ = γ0. However, when Hm(φ) = φ2(1 − φ)2 (so that the double-well potential
is associated with a “per unit mass” quantity, see Eq. (7)) Eq. (41) no longer has the hyperbolic tangent profile
solution. Additionally, with r(φ) = φ2(3 − 2φ) we find

γ = γ0
2[(ρS/ρL)+ (ρS/ρL)

1/2 + 1]

3[(ρS/ρL)1/2 + 1]
, (48)

and with r(φ) = φ we find

γ = γ0
8[3 + 9(ρS/ρL)

1/2 + 11(ρS/ρL)+ 9(ρS/ρL)
3/2 + 3(ρS/ρL)

2]

35[1 + (ρS/ρL)1/2]3
. (49)

Each of the expressions for γ in (48) and (49) evaluates to γ0 when the bulk densities are equal. Furthermore, they
are increasing functions of ρS/ρL and vary approximately from 0.7γ0 to 2.3γ0 as ρS/ρL varies from 0.1 to 10.

This analysis shows that the equilibrium version of the present phase-field model allows an isothermal system
in which the pressure difference between the two bulk phases is equal to the surface tension γ times interface
curvature (the Young–Laplace equation) while the temperature of the system is determined by γ times interface
curvature (the Gibbs–Thomson effect) and also by the bulk pressure, when there is a density mismatch, through a
modified form of the Clausius–Clapeyron relation. The Clausius–Clapeyron pressure effect has been investigated
by LaCombe et al. [34] as an additional control on the interface melting temperature during dendritic growth. We
also note that Maruyama et al. [35] have examined transitions in the kinetic growth shapes of ice Ih, from a circular
disk to a hexagonal plate, in response to pressure-induced alterations of the melting point near the roughening
transition.

5. Nonequilibrium: sharp-interface analysis

In this section, we examine the role of nonequilibrium effects on the hydrodynamic boundary conditions that
arise in the sharp-interface limit as well as the heat flux and Clausius–Clapeyron boundary conditions.
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5.1. Scaling arguments

In order to guide this analysis, we examine the Clausius–Clapeyron relation for a planar interface derived in
AMW [1]. In terms of the present nondimensionalizations, their result is

−εΛθ − ε

γ̃

[
ρL

ρS
− 1

]
(p.S − p.)= ετ ρS

ρL
Vn

∫ +∞

−∞
1

[ρ(Φ0)]2

(
dΦ0

dζ

)2

dζ + ε

γ̃

1

2
V 2
n

(
ρL

ρS
− 1

)2

+Pr

γ̃

ρS

ρL
Vn

∫ +∞

−∞
[2µ(Φ0)+ λ(Φ0)]

[
d

dζ

(
1

ρ(Φ0)

)]2

dζ. (50)

The left-hand side of this equation contains the temperature and pressure terms. The right-hand side involves an
interfacial attachment kinetics term, a volume-change term (which can also be interpreted as a velocity-dependent
modification of the far field pressure owing to the vapor recoil effect [36]) and a viscous dissipation (or viscous drag)
term, respectively. The attachment kinetics term is present in phase-field models without fluid flow [10] although the
integral term here is modified by the density function. The viscous drag term is associated with the velocity change
across the interfacial region in the normal direction and vanishes for inviscid flows or density-matched phases. In
the analysis of solute trapping for a binary alloy by Ahmad et al. [37], an analogous effect, called solute drag, was
identified (see the integral term in their Eq. (34)). In Eq. (50), the viscous drag term vanishes with the square of
the density difference across the interface times the interface velocity while the solute drag effect in Ahmad et al.
vanishes with the square of the concentration difference across the interface times the interface velocity.

In an asymptotic sense, it is possible to obtain a number of dominant balances among the physical effects
represented by Eq. (50). In the case of equal densities and no flow possible balances include the situations where
temperature is controlled at leading-order by attachment kinetics (e.g. if the interface is nearly planar), by curvature
effects (the Gibbs–Thomson effect), by both effects, or by neither (e.g. see Refs. [10,23,27,28]). In the present
context, we must determine how density differences and fluid flow affect the interface temperature. If in Eq. (50)
all parameters areO(1) as ε → 0, then the viscous drag term dominates and no balance can be achieved. Hence we
now reconsider the different terms in the equation in more detail.

Anderson et al. [1] found that for a typical material such as lead the viscous drag term was negligible compared
to the attachment kinetics term due at least in part to a small density difference. This was true even for solid to
liquid viscosity ratios of as large as 106. Consequently, in Section 5.2, we consider an asymptotic regime in which
the density difference (ρS/ρL − 1) → 0 as ε → 0.

In Section 5.3, we consider a second asymptotic regime in which the density difference isO(1) and the coefficient
Pr/γ̃ = Ca/6 = O(ε) while the viscosity ratio µS/µL is treated as O(1) with respect to ε. This scaling may be
more appropriate for two fluids (say liquid and vapor) where the density difference is not small and viscous effects
are of secondary importance.

Another possible scaling would be to specify the viscosity function µ(φ) to be O(ε) in the interfacial region,
where dρ/dζ is nonzero. However, it is not clear that this is physically plausible and we do not pursue this further.

As a simplification, in the remaining analyses we shall use exclusively the double-well potential given byHv(φ) =
ρ(φ)Hm(φ) = φ2(1 − φ)2. We note, however, that in the case of nearly matched densities in Section 5.2, Hv(φ)

and Hm(φ) are equivalent at leading order.

5.2. The case: ρS/ρL − 1 = O(ε), Ca = O(1), λ = O(ε)

In this section, we describe a classical sharp-interface analysis where λ = εΛ with Λ = O(1) as ε → 0 and we
assume that the solid and liquid densities are nearly matched. In particular, we take
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ρ(φ) = 1 + εχr(φ), (51)

where χ is O(1) as ε → 0.
We use the expansions

�u(ζ 1, ζ 2, ζ 3, t) = �u0(ζ
1, ζ 2, ζ 3, t)+ ε �u1(ζ

1, ζ 2, ζ 3, t)+ · · · , (52a)

p(ζ 1, ζ 2, ζ 3, t) = p0(ζ
1, ζ 2, ζ 3, t)+ εp1(ζ

1, ζ 2, ζ 3, t)+ · · · , (52b)

φ(ζ 1, ζ 2, ζ 3, t) = φ0(ζ
1, ζ 2, ζ 3, t)+ εφ1(ζ

1, ζ 2, ζ 3, t)+ · · · , (52c)

θ(ζ 1, ζ 2, ζ 3, t) = θ0(ζ
1, ζ 2, ζ 3, t)+ εθ1(ζ

1, ζ 2, ζ 3, t)+ · · · (52d)

for the outer variables. The leading-order velocity and pressure in the bulk phases satisfy the incompressible
Navier–Stokes equations

D�u0

Dt
= −∇p0 + Pr ∇ · τττ 0, (53a)

0 = ∇ · �u0. (53b)

The phase-field equation gives φ0 = 0 in the liquid and φ0 = 1 in the solid and the energy equation becomes

Dθ0

Dt
= k∇2θ0 + S Pr

Λγ̃
τττ 0 : ∇�u0, (54)

where k = 1 in the liquid and k = kS/kL in the solid.
The outer variables must satisfy interfacial conditions which we will determine by examining the inner problem

and invoking matching and solvability conditions. In the inner region we put

�U(ζ 1, ζ 2, ζ, t) = �U0(ζ
1, ζ 2, ζ, t)+ ε �U1(ζ

1, ζ 2, ζ, t)+ · · · , (55a)

P(ζ 1, ζ 2, ζ, t) = 1

ε
[P0(ζ

1, ζ 2, ζ, t)+ εP1(ζ
1, ζ 2, ζ, t)+ · · · ], (55b)

Φ(ζ 1, ζ 2, ζ, t) = Φ0(ζ
1, ζ 2, ζ, t)+ εΦ1(ζ

1, ζ 2, ζ, t)+ · · · , (55c)

Θ(ζ 1, ζ 2, ζ, t) = Θ0(ζ
1, ζ 2, ζ, t)+ εΘ1(ζ

1, ζ 2, ζ, t)+ · · · , (55d)

MMM(ζ 1, ζ 2, ζ, t) = 1

ε
[MMM0(ζ

1, ζ 2, ζ, t)+ εMMM1(ζ
1, ζ 2, ζ, t)+ · · · ]. (55e)

We examine each of the governing equations in the following sections.

5.2.1. Continuity equation
The leading-order problem for the continuity equation (29) shows that U3

0 is independent of ζ . The matching
condition for velocity is

lim
ζ→∞

�U0 = �u0|L, lim
ζ→−∞

�U0 = �u0|S, (56)

where ‘|L’ and ‘|S’ denote a quantity in the bulk phase evaluated on the liquid and solid side of the interface,
respectively. It follows that

�u0 · n̂|LS = 0. (57)

This is the normal mass flux condition when the densities match to leading order.
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5.2.2. Momentum equation
At leading-order [O(ε−1)], the momentum equation (30) gives that

∂M31
0

∂ζ
= ∂M32

0

∂ζ
= ∂M33

0

∂ζ
= 0. (58)

Using (21a), (22a)–(22c) and the results in Appendix A we find that

M31
0 = Pr τ 31

0 , M32
0 = Pr τ 32

0 , M33
0 = −

[
P0 + 1

2
γ̃

(
∂Φ0

∂ζ

)2
]

+ Pr τ 33
0 . (59)

Integrating (58) once gives that these leading-order stresses are independent of ζ . However, applying the matching
condition on the stress gives

lim
ζ→±∞

MMM0 = 0, (60)

and soM31
0 = M32

0 = M33
0 = 0. Employing the expressions for τ 31

0 , τ 32
0 and τ 33

0 given in Appendix A we find

µ(Φ0)
∂U1

0

∂ζ
= 0, µ(Φ0)

∂U2
0

∂ζ
= 0, −

[
P0 + 1

2
γ̃

(
∂Φ0

∂ζ

)2
]

+ 4

3
Prµ(Φ0)

∂U3
0

∂ζ
= 0, (61)

so that the forms of the velocity components and the pressure in the interfacial layer are

U1
0 = b1(ζ

1, ζ 2, t), U2
0 = b2(ζ

1, ζ 2, t), U3
0 = b3(ζ

1, ζ 2, t), (62)

P0 = −1

2
γ̃

(
∂Φ0

∂ζ

)2

, (63)

where b1, b2 and b3 are independent of ζ . The matching condition for velocity (56) then gives the no-slip condition

[�u0 − n̂(�u0 · n̂)]|LS = 0, (64)

which shows that the tangential components of the leading-order velocities in the bulk phases are continuous across
the interface.

Consistent with the leading-order inner stresses vanishing in the far-field limit, the leading-order inner pressure
P0 also vanishes in this limit. We emphasize that although the leading-order inner pressure term is O(1/ε) (see
Eq. (55b)), the leading-order contribution to the stress is O(1) as MMM0 = 0. Stress jumps across the interface are
determined next.

The momentum equation at O(1) in the inner region gives

(U3
0 − Vn)

∂U1
0

∂ζ
= ∂M31

1

∂ζ
+ ∂M11

0

∂ζ 1
+ ∂M21

0

∂ζ 2
− (K1 +K2)M

31
0 −K1(M

13
0 +M31

0 ), (65a)

(U3
0 − Vn)

∂U2
0

∂ζ
= ∂M32

1

∂ζ
+ ∂M12

0

∂ζ 1
+ ∂M22

0

∂ζ 2
− (K1 +K2)M

32
0 −K1(M

23
0 +M32

0 ), (65b)

(U3
0 − Vn)

∂U3
0

∂ζ
= ∂M33

1

∂ζ
+ ∂M13

0

∂ζ 1
+ ∂M23

0

∂ζ 2
− (K1 +K2)M

33
0 +K1M

11
0 +K2M

22
0 . (65c)

However, usingM31
0 = M32

0 = M33
0 = 0, the symmetric nature of the stress tensor, Eqs. (62), and the expressions
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for the components of the stress tensor given in Appendix A, these equations simplify and we find that

∂M31
1

∂ζ
= − ∂

∂ζ 1

[
−P0 + 1

2
γ̃

(
∂Φ0

∂ζ

)2
]
, (66a)

∂M32
1

∂ζ
= − ∂

∂ζ 2

[
−P0 + 1

2
γ̃

(
∂Φ0

∂ζ

)2
]
, (66b)

∂M33
1

∂ζ
= −(K1 +K2)

[
−P0 + 1

2
γ̃

(
∂Φ0

∂ζ

)2
]
. (66c)

Integrating these equations from ζ = −∞ to ζ = +∞ gives that

M31
1 |+∞

−∞ = −γ̃ ∂I
∂ζ 1

, M32
1 |+∞

−∞ = −γ̃ ∂I
∂ζ 2

, M33
1 |+∞

−∞ = −γ̃ (K1 +K2)I, (67)

where, on using Eq. (63) the integral I may be expressed as

I =
∫ +∞

−∞

(
∂Φ0

∂ζ

)2

dζ. (68)

The integral I evaluates to 1
6 for the double-well Hv(φ) = ρ(φ)Hm(φ) = φ2(1 − φ)2. Matching allows Eqs. (67)

to be expressed in dimensional form as

[(−p0III + τττ 0) · �n]⊥|LS = −γ0(K1 +K2), (69a)

[τττ 0 · �n]‖|LS = 0, (69b)

where the subscripts ⊥ and ‖ indicate components normal and parallel to the interface. Here τττ 0 represents the
leading-order outer viscous stress tensor. These are the conventional stress balances that hold in the absence of
Marangoni effects, whereby the tangential stress is continuous across the interface and the normal stress difference
across the interface is balanced by surface tension times interface curvature.

In the interest of modeling a solid–liquid system we examine the limit µS/µL → ∞. In the bulk solid this limit
gives at leading-order that ∇·(∇�uS+∇�uT

S) = 0 while the above stress boundary conditions give [(∇�uS+∇�uT
S)·n̂]‖ =

0 and [(∇�uS+∇�uT
S)·n̂]⊥ = 0. Hence the solid phase undergoes rigid body motion at leading order. The leading-order

velocity field in the liquid phase satisfies the Navier–Stokes equations in the bulk and is subject to the normal flux
and no-slip boundary conditions on the solid–liquid interface. As expected in this limit, the stress in the liquid is
not imposed through a boundary condition but rather can be derived from the velocity field.

5.2.3. Energy equation
We next consider the energy equation (32) and recall that ν = δ = (S/εΛ) = O(ε−1). We note that e =

θ − r(φ) + (S/2Λε)Hm(φ) − (Sp./Λγ̃ ρ), so that in the inner region the advective term in the energy equation
contributes at leading-order O(ε−2). The effects of dissipation as well as thermal diffusion also contribute at this
order and we find that

S

2Λ
(U3

0 − Vn)∂Hm

∂ζ
= ∂

∂ζ

[
Q(Φ0)

∂Θ0

∂ζ

]
+ S

2Λ
(U3

0 − Vn) ∂
∂ζ

[(
∂Φ0

∂ζ

)2
]
. (70)

We note that the leading-order phase-field variableΦ0 satisfies Eq. (74), so that terms with coefficients S/2Λ cancel.



318 D.M. Anderson et al. / Physica D 151 (2001) 305–331

Eq. (70) can then be integrated twice to give

Θ0 =
∫ ζ d1(ζ

1, ζ 2, t)

Q(Φ0)
dζ + d0(ζ

1, ζ 2, t), (71)

where d0 and d1 are independent of ζ . Matching the inner temperature to the outer solutions gives d1 = 0, so that
Θ0 = d0(ζ

1, ζ 2, t) and θ0|L = θ0|S = Θ0. Therefore, the inner temperature Θ0 is independent of ζ and the outer
temperature is continuous across the interface. In dimensional terms, we write TL = TS = TI, where TI is the
interface temperature as given in Eq. (78).

We can identify a heat flux boundary condition when we examine theO(ε−1) problem. The analysis involves the
inner velocity component correction U3

1 , which is determined from the correction to the continuity equation. The
details of this calculation are contained in Appendix C. We find that in dimensional form the heat flux boundary
condition obtained is

kn̂ · ∇T |LS = (�u0|L · n̂− Vn)[ρLL+ γ0(K1 +K2)]. (72)

This is the classical Stefan condition modified to account for motion in the solid and liquid bulk phases as well as
the curvature of the interface. The effect of flow only enters in the first factor where it arises as the normal velocity
of the material relative to the interface. The curvature effect follows from the term ε2ν Dφ/Dt ∇2φ in Eq. (32).
It represents the internal energy gradient and double-well terms in our model. Similar curvature effects have been
recognized by Umantsev and coworkers [38,39] who identified the coefficient of the curvature to be γ0 −T ∂γ0/∂T .
Eq. (72) is in agreement with this work when we observe from (11) that γ0 is independent of temperature. Fife and
Penrose [26] and Fried and Gurtin [40] have also identified this curvature effect in the context of phase-field models.
In sharp-interface formulations Wollkind and Maurer [41], Umantsev and Davis [38], Zhang and Garimella [42]
and Schlitz and Garimella [43] studied its effect on the stability of the interface and Lemieux and Kotliar [44] its
influence on velocity selection during dendritic growth.

5.2.4. Phase-field equation
At leading-order, the phase-field equation (31) for nearly matched densities becomes

0 = ∂2Φ0

∂ζ 2
− 1

2
H ′

m(Φ0). (73)

This equation has the first integral

0 =
(
∂Φ0

∂ζ

)2

−Hm(Φ0). (74)

The first-order phase-field equation is given by

∂2Φ1

∂ζ 2
− 1

2
H ′′

m(Φ0)Φ1 = τ(U3
0 − Vn)∂Φ0

∂ζ
+ (K1 +K2)

∂Φ0

∂ζ
+ΛΘ0r

′(Φ0)+ χ

2

∂

∂φ
[r(Φ0)Hm(Φ0)], (75)

where we have used (63) and (74). Upon multiplying Eq. (75) by ∂Φ0/∂ζ the solvability condition can be readily
obtained

0 = τ(U3 − Vn)
∫ +∞

−∞

(
∂Φ0

∂ζ

)2

dζ + (K1 +K2)

∫ +∞

−∞

(
∂Φ0

∂ζ

)2

dζ +ΛΘ0

∫ +∞

−∞
∂r(Φ0)

∂ζ
dζ

+χ
2

∫ +∞

−∞
∂[r(Φ0)Hm(Φ0)]

∂ζ
dζ. (76)
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With Hm(Φ0) = Φ2
0 (1 −Φ0)

2 and r(0) = 0 and r(1) = 1 we find that the interfacial condition is

0 = τ(U3
0 − Vn)+ (K1 +K2)− 6ΛΘ0, (77)

or in dimensional terms

L

(
1 − TI

TM

)
= − γ0

ρL
(K1 +K2)− (�u0|S · n̂− Vn) L

TM

1

µmob
, (78)

where TI is the interface temperature and µmob the interface mobility given by

µmob = 6ρLLl

TMM
. (79)

Equation (78) gives the interface temperature TI in terms of curvature and attachment kinetics and is equivalent
(when �u0|S = 0) to the result for no flow [10]. It differs from the more general Clausius–Clapeyron relation (see
Eq. (102)) in that the effects of pressure, density change and viscous drag do not enter at leading order. We expect
that this equation represents typical solid–liquid systems, in which the density difference between the two phases
is small.

5.3. The case: Ca = O(ε), ρS/ρL − 1 = O(1), λ = O(ε)

As in the previous case, we conduct a classical sharp-interface analysis, but now we assume that the density
difference isO(1) and the viscous effects areO(ε). Specifically, we put Pr/γ̃ = Ca/6 = Cε, where C = O(1), and
again take λ = Λε, where Λ = O(1) as ε → 0.

We follow the same procedure as in the previous case and find that the leading-order outer problem remains the
same with the exception that the Navier–Stokes equation (53a) is replaced by the Euler equation

ρ
D�u0

Dt
= −∇p0, (80)

where in this equation ρ = 1 in the liquid and ρ = ρS/ρL in the solid and the energy equation is without the
dissipation terms

ρ
Dθ0

Dt
= k∇2θ0, (81)

where k = 1 in the liquid and k = kL/kS in the solid.
Interfacial conditions are derived by examining the inner region. Here we again use the expansions (55a)–(55e)

and consider each equation in turn.

5.3.1. Continuity equation
The leading-order problem for the continuity equation (29) may be solved to obtain the form for U3

0 through the
interface as

U3
0 = J0(ζ

1, ζ 2, t)

ρ(Φ0)
+ Vn. (82)

The matching condition (56) applied to the normal velocity component gives

ρ(�u0 · n̂− Vn)|LS = 0 (83)

in dimensional form, where J0 = ρL(�u0|L · n̂ − Vn) = ρS(�u0|S · n̂ − Vn) is identified as the mass flux across the
interface.
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5.3.2. Momentum equation
At leading-order [O(ε−1)] the momentum equation (30) gives Eqs. (58) as in the analysis of Section 5.2. However,

owing to the different scaling, Eqs. (21a), (22a)–(22c) and the results in Appendix A now lead to

M31
0 = 0, M32

0 = 0, M33
0 = −

[
P0 + 1

2
γ̃

(
∂Φ0

∂ζ

)2
]
. (84)

Eqs. (58) and the matching condition on the stress (60) requireM33
0 = 0, so that

P0 = −1

2
γ̃

(
∂Φ0

∂ζ

)2

. (85)

The next order momentum equation in the inner region gives

ρ(Φ0)(U
3
0 − Vn)

∂U1
0

∂ζ
= ∂M31

1

∂ζ
+ ∂M11

0

∂ζ 1
+ ∂M21

0

∂ζ 2
− (K1 +K2)M

31
0 −K1(M

13
0 +M31

0 ), (86a)

ρ(Φ0)(U
3
0 − Vn)

∂U2
0

∂ζ
= ∂M32

1

∂ζ
+ ∂M12

0

∂ζ 1
+ ∂M22

0

∂ζ 2
− (K1 +K2)M

32
0 −K1(M

23
0 +M32

0 ), (86b)

ρ(Φ0)(U
3
0 − Vn)

∂U3
0

∂ζ
= ∂M33

1

∂ζ
+ ∂M13

0

∂ζ 1
+ ∂M23

0

∂ζ 2
− (K1 +K2)M

33
0 +K1M

11
0 +K2M

22
0 . (86c)

However, usingM31
0 = M32

0 = M33
0 = 0, the symmetric nature of the stress tensor and the expressions in Appendix

A with Pr/γ̃ = Cε these equations simplify to give

∂M31
1

∂ζ
= J0

∂U1
0

∂ζ
− ∂

∂ζ 1

[
−P0 + 1

2
γ̃

(
∂Φ0

∂ζ

)2
]
, (87a)

∂M32
1

∂ζ
= J0

∂U2
0

∂ζ
− ∂

∂ζ 2

[
−P0 + 1

2
γ̃

(
∂Φ0

∂ζ

)2
]
, (87b)

∂M33
1

∂ζ
= J0

∂U3
0

∂ζ
− γ̃ (K1 +K2)

(
∂Φ0

∂ζ

)2

, (87c)

where

M31
1 = γ̃

(
−∂Φ0

∂ζ 1

∂Φ0

∂ζ
+ Cµ(Φ0)

∂U1
0

∂ζ

)
, (88a)

M32
1 = γ̃

(
−∂Φ0

∂ζ 2

∂Φ0

∂ζ
+ Cµ(Φ0)

∂U2
0

∂ζ

)
, (88b)

M33
1 = −P1 − p. + γ̃

(
−∂Φ0

∂ζ

∂Φ1

∂ζ
+ 4

3
Cµ(Φ0)

∂U3
0

∂ζ

)
. (88c)

Now using these expressions and (85), Eqs. (87a)–(87c) become

γ̃
∂

∂ζ

[
−∂Φ0

∂ζ 1

∂Φ0

∂ζ
+ Cµ(Φ0)

∂U1
0

∂ζ

]
= J0

∂U1
0

∂ζ
− γ̃ ∂

∂ζ 1

[(
∂Φ0

∂ζ

)2
]
, (89a)
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γ̃
∂

∂ζ

[
−∂Φ0

∂ζ 2

∂Φ0

∂ζ
+ Cµ(Φ0)

∂U2
0

∂ζ

]
= J0

∂U1
0

∂ζ
− γ̃ ∂

∂ζ 2

[(
∂Φ0

∂ζ

)2
]
, (89b)

∂

∂ζ

[
−P1 − p. + γ̃

(
−∂Φ0

∂ζ

∂Φ1

∂ζ
+ 4

3
Cµ(Φ0)

∂U3
0

∂ζ

)]
= J0

∂U3
0

∂ζ
− γ̃ (K1 +K2)

(
∂Φ0

∂ζ

)2

. (89c)

The leading-order phase-field Φ0 satisfies the equilibrium equation (41) (see also Section 5.3.4) and depends only
on ζ . Consequently, we integrate Eqs. (89a) and (89b) to obtain

U1
0 = b3(ζ

1, ζ 2, t) exp

[
J0

γ̃ C

∫ ζ 1

µ(Φ0)
dζ

]
+ b1(ζ

1, ζ 2, t), (90a)

U2
0 = b4(ζ

1, ζ 2, t) exp

[
J0

γ̃ C

∫ ζ 1

µ(Φ0)
dζ

]
+ b2(ζ

1, ζ 2, t), (90b)

where b1, b2, b3 and b4 are independent of ζ . We now apply the matching condition for velocity (56) and find
b3 = b4 = 0, so that U1

0 = b1(ζ
1, ζ 2, t) and U2

0 = b2(ζ
1, ζ 2, t). Hence, the leading-order outer tangential velocity

components are continuous across the interface

[�u0 − n̂(�u0 · n̂)]|LS = 0. (91)

These results give thatM31
1 = M32

1 = 0. However, integrating the momentum equation (89c) gives that P1 is

P1 = c3(ζ
1, ζ 2, t)− p. − J0U

3
0 − γ̃ ∂Φ0

∂ζ

∂Φ1

∂ζ
+ γ̃ (K1 +K2)

∫ ζ

−∞

(
∂Φ0

∂ζ

)2

dζ + 4

3
γ̃ Cµ(Φ0)

∂U3
0

∂ζ
, (92)

where c3 is independent of ζ . We next apply the matching principle for the pressure (37) to find that c3 = p0|S +
p. + J0 �u0|S · �n and the jump in the outer pressure at the interface is given (in dimensional form) by

−p|LS = J 2
0

ρS

(
ρS

ρL
− 1

)
− γ0(K1 +K2), (93)

where J0 is given in the text after Eq. (83). Therefore, the pressure undergoes a jump across the interface due to
the vapor recoil effect and interface curvature. Viscous stresses do not appear at this order in the analysis since
Ca = O(ε).

5.3.3. Energy equation
We examine the energy equation (32) and find, as in the previous case, that TL = TS = TI; the outer temperature

is continuous across the interface with the interface temperature TI given by Eq. (102). The heat flux boundary
condition follows in an analogous manner as that of Section 5.2.3. The details of this calculation are given in
Appendix D. We find that in dimensional form the heat flux boundary condition obtained is

kn̂ · ∇T |LS = J0

{
L+ γ0(K1 +K2)

ρL
+ (p|S − pR)

[
1

ρL
− 1

ρS

]
− J 2

0

2

[
1

ρL
− 1

ρS

]2
}
. (94)

In addition to the latent heat and curvature terms on the left-hand side of this equation, which were also present
in Eq. (72), we now have terms involving density jumps (e.g. see [36]). The last term on the right-hand side
has the effect of reducing the effective latent heat, while the curvature term and pressure terms may contribute
positively or negatively. We note that the terms on the right-hand side of this balance also appear in the modified
Clausius–Clapeyron relation (102) and so can be related to the viscous dissipation and the interface kinetics effects.
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5.3.4. Phase-field equation
The leading-order phase-field equation is the same Eq. (41) as in the equilibrium analysis. An analysis of the

phase-field equation may be pursued in a similar manner to that in the equilibrium case in Section 4.2 and the
previous nonequilibrium case in Section 5.2.4. An alternate way [1] of deriving the modified Clausius–Clapeyron
relation, however, is to examine the jump in Gibbs free energy g. One expression for g follows from its definition
in (20) and another follows directly from the phase-field equation (31). Equating these two expressions gives the
Clausius–Clapeyron relation for a curved interface in nonequilibrium, as we show below.

Upon expanding the definition (20) as g = g(0) + εg(1) (parentheses around the subscripts distinguish between
the terms in the expansion and our previously defined g0 in Eq. (7)) we find, using Eq. (85) that the jump in g(0)
vanishes. At O(ε), using Eqs. (85) and (92) and that θ0|LS = 0, the definition of g gives

g(1)|LS = −ΛΘ0 + p0|S
γ̃

[
1 − ρL

ρS

]
− J 2

0

γ̃

(
1 − ρL

ρS

)
+ (K1 +K2)

∫ ∞

−∞

(
∂Φ0

∂ζ

)2

dζ, (95)

where we have used r(0) = 0 and r(1) = 1 but otherwise have not specified the form of r(φ).
We next examine the jump in g as obtained directly from the phase-field equation (31). The leading-order

phase-field equation can be written as

ρ(Φ0)
∂g(0)

∂φ
= ∂2Φ0

∂ζ 2
. (96)

Since g = g(θ, p, φ) we have

∂g

∂ζ
= ∂g

∂θ

∂θ

∂ζ
+ ∂g

∂p

∂p

∂ζ
+ ∂g

∂φ

∂φ

∂ζ
. (97)

Noting that Θ0 is independent of ζ and using Eqs. (85) and (96) we obtain

∂g(0)

∂ζ
= 1

γ̃ ρ(Φ0)

∂P0

∂ζ
+ ∂g(0)

∂φ

∂Φ0

∂ζ
= 1

ρ(Φ0)

∂

∂ζ

[
P0

γ̃
+ 1

2

(
∂Φ0

∂ζ

)2
]

= 0. (98)

This gives g(0)|LS = 0 which is consistent with the definition of g.
At the next order, the phase-field equation requires that g(1) satisfy

ρ(Φ0)
∂g(1)

∂φ
= ∂2Φ1

∂ζ 2
− (K1 +K2)

∂Φ0

∂ζ
− τJ0

1

ρ(Φ0)

∂Φ0

∂ζ
−
[

1

ρ(Φ0)

∂ρ(Φ0)

∂φ

∂2Φ0

∂ζ 2

]
Φ1. (99)

We obtain from Eq. (97) at O(ε) that

∂g(1)

∂ζ
= 1

γ̃

∂

∂φ

(
1

ρ(Φ0)

)
Φ1
∂P0

∂ζ
+ 1

γ̃ ρ(Φ0)

∂P1

∂ζ
+ ∂g(1)

∂φ

∂Φ0

∂ζ
+ 1

ρ(Φ0)

∂2Φ0

∂ζ 2

∂Φ1

∂ζ
, (100)

where we have used that Θ0 is independent of ζ and that ∂g(0)/∂θ = 0 (consistent with the dimensionless entropy
in Eq. (19) having no contribution at O(1) when β = 0 and λ = O(ε)). Some additional manipulations of (100)
show that

g(1)|LS = −τJ0

∫ +∞

−∞
1

[ρ(Φ0)]2

(
∂Φ0

∂ζ

)2

dζ − 1

2

J 2
0

γ̃

[
1 −

(
ρL

ρS

)2
]

−4

3
CJ0

∫ +∞

−∞
µ(Φ0)

[
∂

∂ζ

(
1

ρ(Φ0)

)]2

dζ. (101)
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Now if we equate the two results (95) and (101) we find the modified Clausius–Clapeyron relation (in dimensional
form) that includes nonequilibrium and curvature effects

L

(
1 − TI

TM

)
= (p|S − pR)

(
1

ρS
− 1

ρL

)
− γ0

ρL
(K1 +K2)+

J 2
0

2

(
1

ρS
− 1

ρL

)2

− J0

ρL

[
M

lρL
I1 + 4

3

µL

lρL
I2

]
,

(102)

where

I1 =
∫ +∞

−∞
1

ρ2

(
∂Φ0

∂ζ

)2

dζ, I2 =
∫ +∞

−∞
µ(Φ0)

[
∂

∂ζ

(
1

ρ

)]2

dζ. (103)

These integrals are evaluated for special cases in Appendix E.
Notice that the first three terms of Eq. (102) represent effects that are present in the equilibrium case while the

remaining terms represent nonequilibrium effects associated with the change of phase. Also notice that M/lρL =
6L/TMµmob as defined in (79). As a consequence of our quasi-incompressibility assumption (see Eq. (6)) the effects
of compressibility of the bulk fluid are not included in this equation. We refer the reader to [45], where the effects of
isothermal compressibility have been included in a modified Clausius–Clapeyron relation for a solid–liquid system.

6. Conclusions

In this paper, we have examined sharp-interface limits of a phase-field model of solidification for a pure material
that includes the effects of fluid motion. The model, given by Eqs. (29)–(32), was developed in Refs. [1,22]. Here
we considered a simplified version that retains the square-gradient and double-well terms in the internal energy
functional but excludes them in the entropy functional. The thermodynamically consistent derivation given in [1] and
the identification of the distinguished limits which lead to useful free-boundary problems given in this paper together
provide a validated phase-field model of solidification with convection. This paper gives the first sharp-interface
analysis which addresses fluid flow and solidification in a phase-field model. However, we note that a similar
sharp-interface calculation for a binary fluid (Cahn–Hilliard model) in the inviscid case has been carried out by
Lowengrub and Truskinovsky [16].

The first important result in the present work follows from the sharp-interface analysis of the equilibrium version
of the model in which we considered the classical limit λ = O(ε) as ε → 0. Here the phase-field model leads to the
Young–Laplace condition (46a) relating the jump in pressure between the bulk phases to the interface curvature.
Also, a Clausius–Clapeyron condition (46b) relates the temperature of the system to the interface curvature and,
when the bulk densities are different, the pressure as well. Therefore, even when there is no flow, a density difference
between the bulk phases can affect the interfacial temperature.

In the first of two distinguished limits for the nonequilibrium case, we used λ = O(ε), ρS/ρL −1 = O(ε)with all
other parameters treated asO(1), as ε → 0. The hydrodynamic boundary conditions of the associated free-boundary
problem are the standard ones expected for a fluid–fluid interface undergoing phase transition (namely, the normal
flux boundary condition (57), the condition of continuous tangential velocities (64) and the stress balance conditions
(69a) and (69b)). It is important to point out that the condition of continuous tangential velocities and the stress
balances both follow from the momentum equation. Viscosity is an essential element that ensures the continuity
of tangential velocity because, in the sharp interface limit, the interface cannot support unbounded shear stresses
and strains across it. Without viscosity we expect that the sharp-interface analysis would allow a discontinuity
in the tangential velocity across the interface. The thermal interfacial conditions obtained in this case are also of
the familiar types (namely, the continuity of the bulk temperatures at the interface, an expression for the interface
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temperature (78) and a condition involving the jump in heat flux across the interface (72)). However, we found that
the heat flux boundary condition involves an interface curvature term proportional to surface energy γ0. This term is
often not included in standard free-boundary formulations. Its origin here is the source term in the energy equation
(32) related to the gradient energy coefficient εE and is present with or without flow and density differences. The
appearance of this term implies physically that the surface energy of the interface affects the balance of energy at the
interface. Umantsev and Roitburd [39] found that the more general coefficient of the curvature term is γ0−T dγ0/dT .
We surmise that had we retained the square-gradient and double-well terms in the entropy functional we would
have recovered this more general term in the sharp-interface limit. Finally, the interface temperature in this case is
modified from its reference value TM by interface curvature and attachment kinetics.

This limit allows for the interpretation of the solid as a highly viscous liquid if we take the subsequent limit
µS/µL → ∞. To leading-order in µS/µL the corresponding free-boundary problem is satisfied by rigid body
motion in the putative solid phase while the velocity in the liquid phase satisfies the Navier–Stokes equations
subject to normal mass flux and no-slip conditions at the interface (see the discussion at the end of Section 5.2.2).

A second distinguished limit, given by λ = O(ε) and Pr/γ̃ = O(ε), is also possible in the nonequilibrium
setting. This limiting case may be more appropriate for a fluid–fluid or fluid–vapor system where viscous effects
may be of secondary importance. Here the hydrodynamic conditions are similar to the previous nonequilibrium case
with the exception that the viscous terms are not present in the stress jump condition at leading-order (see Eqs. (83),
(91) and (93)). The condition of continuous tangential velocities is still obtained, reflecting the limit of small but
nonvanishing viscosity. The thermal interfacial conditions have the same general structure as those in the previous
nonequilibrium case (see Eqs. (94) and (102)) but now include additional effects that can be attributed to density
differences between the solid and liquid phases.

The phase-field model developed in [1] is the so-called generalized phase-field model, as it includes additional
square-gradient and double-well contributions to both the internal energy and entropy functionals of the system.
Similar models have been developed by other authors [14,33,40,46,47]. McFadden et al. [30] considered vari-
ous sharp-interface limits of a generalized phase-field model and investigated the so-called thin interface limit, in
which λ = O(1) and λθ = O(ε) as ε → 0. They found that the generalized phase-field models can give rise to
additional nonstandard terms in the thermal interfacial boundary conditions. Here we examined different asymp-
totic limits both with λ = O(ε) as ε → 0 and also found that the leading-order thermal interfacial conditions
involve new, albeit different, terms directly related to the square-gradient and double-well terms in the energy
functional.
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Appendix A. Notes on differential geometry

We employ body fitted coordinates (ζ 1, ζ 2, ζ 3) to the interface [φ = 1
2 given by �r = �r0(ζ 1, ζ 2, t)] (e.g. see

[48]). Here ζ 1, ζ 2 measure distance along the principal directions of the interface and ζ 3 measures distance in the
direction normal to the interface. Hence

�r = �r0(ζ 1, ζ 2, t)+ ζ 3�n,
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where �n is the unit normal to the the interface. The corresponding basis vectors are

�e1 = (1 − ζ 3K1)�t1, �e2 = (1 − ζ 3K2)�t2, �e3 = �n,

where �t1, �t2 are the unit tangent vectors to the interface parallel to the principal directions. The corresponding metric
tensor has nonzero components g11 = (1 − ζ 3K1)

−2, g22 = (1 − ζ 3K2)
−2, g33 = 1.

The gradient of φ may be expressed as

∇φ = ∂φ

∂ζ 1
�e1 + ∂φ

∂ζ 2
�e2 + ∂φ

∂ζ 3
�e3 =

[
(1 − ζ 3K1)

−2 ∂φ

∂ζ 1

]
�e1 +

[
(1 − ζ 3K2)

−2 ∂φ

∂ζ 2

]
�e2 + ∂φ

∂ζ 3
�e3,

where �ek · �ej = δkj . Hence we find that

|∇φ|2 = (1 − ζ 3K1)
−2
(
∂φ

∂ζ 1

)2

+ (1 − ζ 3K2)
−2
(
∂φ

∂ζ 2

)2

+
(
∂φ

∂ζ 3

)2

.

The contravariant components of ∇φ ⊗ ∇φ are


[
(1 − ζ 3K1)

−2 ∂φ

∂ζ 1

]2

(1 − ζ 3K1)
−2(1 − ζ 3K2)

−2 ∂φ

∂ζ 1

∂φ

∂ζ 2
(1 − ζ 3K1)

−2 ∂φ

∂ζ 1

∂φ

∂ζ 3

(1 − ζ 3K1)
−2(1 − ζ 3K2)

−2 ∂φ

∂ζ 1

∂φ

∂ζ 2

[
(1 − ζ 3K2)

−2 ∂φ

∂ζ 2

]2

(1 − ζ3K2)
−2 ∂φ

∂ζ 2

∂φ

∂ζ 3

(1 − ζ 3K1)
−2 ∂φ

∂ζ 1

∂φ

∂ζ 3
(1 − ζ 3K2)

−2 ∂φ

∂ζ 2

∂φ

∂ζ 3

[
∂φ

∂ζ 3

]2



.

We note that the contravariant components of the unit tensor in these coordinates is given by III = diag(g11, g22, g33).
Hence the expansion of σσσφ = γ̃ ε[ 1

2 |∇φ|2III − ∇φ ⊗ ∇φ] in the inner region (with ζ 3 = εζ ) is σσσφ = ε−1[σσσφ0 +
εσσσ
φ
1 +O(ε2)], where

σσσ
φ
0 = γ̃




1

2

(
∂Φ0

∂ζ

)2

0 0

0
1

2

(
∂Φ0

∂ζ

)2

0

0 0 −1

2

(
∂Φ0

∂ζ

)2



,

and

σσσ
φ
1 = γ̃




∂Φ0

∂ζ

∂Φ1

∂ζ
+ ζK1

(
∂Φ0

∂ζ

)2

0 −∂Φ0

∂ζ 1

∂Φ0

∂ζ

0
∂Φ0

∂ζ

∂Φ1

∂ζ
+ ζK2

(
∂Φ0

∂ζ

)2

−∂Φ0

∂ζ 2

∂Φ0

∂ζ

−∂Φ0

∂ζ 1

∂Φ0

∂ζ
−∂Φ0

∂ζ 2

∂Φ0

∂ζ
−∂Φ0

∂ζ

∂Φ1

∂ζ



.

In a similar way the expansion of σσσp = −(p+p.)III in the inner region is given by σσσp = ε−1[σσσp0 + εσσσp1 +O(ε2)],



326 D.M. Anderson et al. / Physica D 151 (2001) 305–331

where the contravariant components of σσσp0 and σσσp1 are

σσσ
p

0 =




−P0 0 0

0 −P0 0

0 0 −P0


 ,

and

σσσ
p

1 =




−P1 − p. − 2ζK1P0 0 0

0 −P1 − p. − 2ζK2P0 0

0 0 −P1 − p.


 .

The viscous part of the stress tensor in the inner region is likewise given by τττ = ε−1[τττ 0 + ετττ 1 +O(ε2)], where the
contravariant components of τττ 0 are

τττ 0 =




−2

3
µ(Φ0)

∂U3
0

∂ζ
0 µ(Φ0)

∂U1
0

∂ζ

0 −2

3
µ(Φ0)

∂U3
0

∂ζ
µ(Φ0)

∂U2
0

∂ζ

µ(Φ0)
∂U1

0

∂ζ
µ(Φ0)

∂U2
0

∂ζ

4

3
µ(Φ0)

∂U3
0

∂ζ



.

The only component of τττ 1 needed for the present calculations is τ 33
1 which is given by

τ 33
1 = 4

3

[
µ(Φ0)

∂U3
1

∂ζ
+ ∂µ

∂φ
Φ1
∂U3

0

∂ζ

]
− 2

3
µ(Φ0)

[
∂U1

0

∂ζ 1
+ ∂U2

0

∂ζ 2
− (K1 +K2)

∂

∂ζ
(ζU3

0 )

]
. (A.1)

The components ofMMM are then formed by

MMM0 = σσσp0 + σσσφ0 + Prτττ 0, (A.2)

MMM1 = σσσp1 + σσσφ1 + Prτττ 1. (A.3)

We note that the components of the divergence of a second rank tensorAAA are given by

Aik
;i = 1√

g

∂(
√
gAik)

∂ζ i
+ AijΓ kij ,

where g = g11g22g33 = (1 − ζ 3K1)
2(1 − ζ 3K2)

2 and Γ kij are the so-called Christoffel symbols. We now expand
∇ ·AAA in the inner region. We note that the only Christoffel symbols with a nonzero order one contribution are

Γ 1
13 = Γ 1

31 = −K1, Γ 2
23 = Γ 2

32 = −K2, Γ 3
11 = K1, Γ 3

22 = K2.

Hence ifAAA = AAA0 + εAAA1 +O(ε2) then

∇ ·AAA= 1

ε

[
∂A3k

0

∂ζ

]
�ek +

[
∂A3k

1

∂ζ
+ ∂A1k

0

∂ζ 1
+ ∂A2k

0

∂ζ 2
− (K1 +K2)A

3k
0

]
�ek

−K1[A13
0 + A31

0 ]�e1 −K2[A23
0 + A32

0 ]�e2 + [A11
0 K1 + A22

0 K2]�e3 +O(ε). (A.4)
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Appendix B. Surface energy

The surface energy γ may be defined as the excess Kramers potential (defined by f − g, where f and g are the
Helmholtz and Gibbs free energies per unit mass) of an interface at the equilibrium temperature TM at pressure pR.
If we introduce a dividing surface at z = zD the surface energy is given by

γ =
∫ zD

−∞

[
ρf−ρg+ε

2
F (TM)

2
φ2
z−ρSfS+ρSgS

]
dz+

∫ +∞

zD

[
ρf − ρg + ε2

F (TM)

2
φ2
z − ρLfL + ρLgL

]
dz,

γ =
∫ zD

−∞

[
−(p − pR)+

ε2
F (TM)

2
φ2
z

]
dz+

∫ +∞

zD

[
−(p − pR)+

ε2
F (TM)

2
φ2
z

]
dz,

γ =
∫ +∞

−∞

[
−(p − pR)+

ε2
F (TM)

2
φ2
z

]
dz, (B.1)

which is independent of the position of the dividing surface. In equilibrium, the stress in the interface is zero and
hencemmm = 0 and thus from (36a) and (36b)

p − pR + ε2
F (TM)

2
φ2
z = 0, (B.2)

and hence we may express the surface energy as

γ =
∫ +∞

−∞
ε2
F (TM)φ

2
z dz = 6γ0

∫ +∞

−∞

(
∂Φ0

∂ζ

)2

dζ, (B.3)

where γ0 = 1
6εF (TM)

√
ρL/2a corresponds to the surface energy when ρS = ρL (see Eq. (11)).

Appendix C. Energy equation analysis: ρS/ρL − 1 = O(ε)ρS/ρL − 1 = O(ε)ρS/ρL − 1 = O(ε)

Here we outline the calculation for the derivation in the sharp-interface limit of the heat flux boundary condition
for the case λ = Λε and ρS/ρL − 1 = O(ε) with all other parameters O(1) as ε → 0. In this case, we note that
ν = δ = S/λ = (S/Λ)ε−1 and from Eq. (18) that e = O(ε−1).

AtO(ε−2) the energy equation (32) gives that the leading-order temperature in the interfacial region is independent
of ζ and hence may be expressed as Θ0(ζ

1, ζ 2, t).
At the next order O(ε−1), we find that the energy equation gives that

∂

∂ζ

[
Q(Φ0)

∂Θ1

∂ζ

]
= S

2Λ
[χr(Φ0)(U

3
0 − Vn)+ (U3

1 − Vn1)]
∂Hm

∂ζ

+(U3
0 − Vn) ∂

∂ζ

[
Θ0 − r(Φ0)+ S

2Λ
H ′

m(Φ0)Φ1 − Sp.

Λγ̃

]

− S
Λ

{
(U3

0 − Vn) ∂
∂ζ

(
∂Φ0

∂ζ

∂Φ1

∂ζ

)
+ 1

2
(U3

1 − Vn1)
∂

∂ζ

[(
∂Φ0

∂ζ

)2
]}

+ S
Λ
(K1 +K2)(U

3
0 − Vn)

(
∂Φ0

∂ζ

)2

+ S

Λγ̃

[
P0

(
∂U1

0

∂ζ 1
+ ∂U2

0

∂ζ 2
+ ∂U3

1

∂ζ
− (K1 +K2)U

3
0

)]
, (C.1)
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and that the continuity equation gives

∂U3
1

∂ζ
+ ∂U1

0

∂ζ 1
+ ∂U2

0

∂ζ 2
− (K1 +K2)U

3
0 = −χ(U3

0 − Vn)∂r(Φ0)

∂ζ
. (C.2)

Eq. (C.1) may be simplified by using (C.2), the leading-order phase-field equation (74), as well as the expression
for P0 given by (63) to yield

∂

∂ζ

[
Q(Φ0)

∂Θ1

∂ζ

]
= S

2Λ
χ(U3

0 − Vn) ∂
∂ζ

[r(Φ0)Hm(Φ0)] − S

Λ
(U3

0 − Vn) ∂
∂ζ

(
∂Φ0

∂ζ

∂Φ1

∂ζ

)

+(U3
0 − Vn) ∂

∂ζ

[
Θ0 − r(Φ0)+ S

2Λ
H ′

m(Φ0)Φ1 − Sp.

Λγ̃

]

+ S
Λ
(U3

0 − Vn)(K1 +K2)

(
∂Φ0

∂ζ

)2

. (C.3)

We integrate this once and apply the matching conditions

lim
ζ→∞

Q(Φ0)
∂Θ1

∂ζ
= n̂ · ∇θ0|L, lim

ζ→−∞
Q(Φ0)

∂Θ1

∂ζ
= kS

kL
n̂ · ∇θ0|S (C.4)

to obtain

n̂ · ∇θ0|L − kS

kL
n̂ · ∇θ0|S = (u3

0 − Vn)
[

1 + S

Λ
(K1 +K2)

∫ +∞

−∞

(
∂Φ0

∂ζ

)2

dζ

]
. (C.5)

Noting that the integral in this expression evaluates to 1
6 , the dimensional form of this interface condition is

kLn̂ · ∇TL − kSn̂ · ∇TS = (�u0|S · n̂− Vn)[ρLL+ γ0(K1 +K2)]. (C.6)

Appendix D. Energy equation analysis: Ca = O(ε)Ca = O(ε)Ca = O(ε)

Here we outline the calculation for the derivation in the sharp-interface limit of the thermal boundary conditions
for the case Pr/γ̃ = Cε, λ = Λε with all other parametersO(1) as ε → 0. As before, we note that ν = δ = S/λ =
(S/Λ)ε−1 and from Eq. (18) that e = O(ε−1).

As for the previous case with nearly matched densities at O(ε−2) the energy equation (32) gives that the
leading-order temperature in the interfacial region is independent of ζ and hence may be expressed asΘ0(ζ

1, ζ 2, t).
At next order O(ε−1) the energy equation (32) gives that

∂

∂ζ

[
Q(Φ0)

∂Θ1

∂ζ

]
+ S

Λ
D1 = S

2Λ
ρ(Φ0)

[
U3

1 − Vn1 − J0
∂

∂φ

(
1

ρ(Φ0)

)
Φ1

]
∂Hm(Φ0)

∂ζ

+J0
∂

∂ζ

[
Θ0 − r(Φ0)+ S

2Λ
H ′

m(Φ0)Φ1 − Sp.

Λγ̃ ρ(Φ0)

]
, (D.1)

where D1 represents the O(ε−1) contribution of the dissipation terms ε(S/Λ)(DΦ/Dt)∇2Φ +H and is given by

D1 = (U3
0 − Vn)∂Φ0

∂ζ

[
∂2Φ1

∂ζ 2
− (K1 +K2)

∂Φ0

∂ζ

]
+ ∂2Φ0

∂ζ 2

[
(U3

1 − Vn1)
∂Φ0

∂ζ
+ (U3

0 − Vn)∂Φ1

∂ζ

]

+
[
−P1 + p.

γ̃
+ 4

3
Cµ(Φ0)

∂U3
0

∂ζ

]
∂U3

0

∂ζ
− P0

γ̃

[
∂U3

1

∂ζ
+ ∂U1

0

∂ζ 1
+ ∂U2

0

∂ζ 2
− (K1 +K2)U

3
0

]
. (D.2)
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Here P1 is given by Eq. (92) and c3(ζ
1, ζ 2, t) = p0|S +p.+ J0 �u0|S · n̂. The normal velocity correction U3

1 , which
can be obtained by examining the continuity equation, is given by

U3
1 − Vn1 = J0

∂

∂φ

(
1

ρ(Φ0)

)
Φ1 + 1

ρ(Φ0)

[
b5(ζ

1, ζ 2, t)+
∫ ζ

−∞
R dζ

]
, (D.3)

where

R = (K1 +K2)ρ(Φ0)U
3
0 − ρ(Φ0)

(
∂U1

0

∂ζ 1
+ ∂U2

0

∂ζ 2

)
. (D.4)

Using this result we can integrate Eq. (D.1) once and apply the matching conditions (C.4) to obtain

n̂ · ∇θ0|L − kS

kL
n̂ · ∇θ0|S = J0 − Sp.J0

Λγ̃

[
1 − ρL

ρS

]
− S

Λ

∫ +∞

−∞
D1 dζ

+ S

2Λ

∫ +∞

−∞

[
b5(ζ

1, ζ 2, t)+
∫ ζ

−∞
R dζ

]
∂Hm

∂ζ
dζ. (D.5)

Next, we use the result for U3
1 to simplify D1 and find

D1 = J0
∂

∂ζ

[
1

ρ(Φ0)

∂Φ0

∂ζ

∂Φ1

∂ζ
+ 1

2

(
∂Φ0

∂ζ

)2
∂

∂φ

(
1

ρ(Φ0)

)
Φ1 − K1 +K2

ρ(Φ0)

∫ ζ

−∞

(
∂Φ0

∂ζ

)2

dζ

]

+ ∂

∂ζ

[
1

2ρ(Φ0)

(
∂Φ0

∂ζ

)2 (
b5(ζ

1, ζ 2, t)+
∫ ζ

−∞
R dζ

)]

+1

2

(
∂Φ0

∂ζ

)2
(
∂U1

0

∂ζ 1
+ ∂U2

0

∂ζ 2
− (K1 +K2)U

3
0

)
+ J0

[
−p0|S + p.

γ̃
+ J0

γ̃
(U3

0 − u3
0|S)

]
∂

∂ζ

(
1

ρ(Φ0)

)
.

(D.6)

If we note that U3
0 − u3

0|S = J0/ρ(Φ0)− ρLJ0/ρS, it follows that

∫ +∞

−∞
D1 dζ = −J0(K1 +K2)

∫ +∞

−∞

(
∂Φ0

∂ζ

)2

dζ + 1

2

(
∂U1

0

∂ζ 1
+ ∂U2

0

∂ζ 2

)∫ +∞

−∞

(
∂Φ0

∂ζ

)2

dζ

−1

2
(K1 +K2)

∫ +∞

−∞
U3

0

(
∂Φ0

∂ζ

)2

dζ − J0

γ̃
(p0|S + p.)

[
1 − ρL

ρS

]
+ J 3

0

2γ̃

[
1 − ρL

ρS

]2

. (D.7)

If we integrate the last term in Eq. (D.5) by parts, use Eqs. (D.4) and (D.7) and again note that (∂Φ0/∂ζ )
2 =

ρ(Φ0)Hm(Φ0) we find that

n̂ · ∇θ0|L − kS

kL
n̂ · ∇θ0|S

= J0

{
1 + S

Λ
(K1 +K2)

∫ +∞

−∞

(
∂Φ0

∂ζ

)2

dζ + S

Λγ̃
p0|S

[
1 − ρL

ρS

]
− S

2Λγ̃
J 2

0

[
1 − ρL

ρS

]2
}
. (D.8)

In dimensional form this heat balance is

kLn̂ · ∇TL − kSn̂ · ∇TS = J0

{
L+ γ0(K1 +K2)

ρL
+ (p|S − pR)

[
1

ρL
− 1

ρS

]
− J 2

0

2

[
1

ρL
− 1

ρS

]2
}
. (D.9)

Here we have assumed that ρ(Φ0)Hm(Φ0) = Φ2
0 (1 −Φ0)

2, so that the integral in Eq. (D.8) evaluates to 1
6 .
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Appendix E. Integrals in Clausius–Clapeyron relation

Suppose ρ(φ)Hm(φ) = φ2(1 − φ)2 and ρ(φ) = 1 + (ρS/ρL − 1)r(φ). Then if r(φ) = φ2(3 − 2φ) we have

I1 =
∫ +∞

−∞
1

ρ2

(
∂Φ0

∂ζ

)2

dζ = 1

6

ρL

ρS
, (E.1)

and if r(φ) = φ with s1 ≡ (ρS/ρL − 1) we have

I1 =
∫ +∞

−∞
1

ρ2

(
∂Φ0

∂ζ

)2

dζ = −2s1 + (2 + s1) ln(1 + s1)
s3

1

. (E.2)

If r(φ) = φ and µ(φ) = 1 + s2r(φ), where s2 = (µS/µL − 1) then

I2 =
∫ +∞

−∞
µ(Φ0)

[
∂

∂ζ

(
1

ρ

)]2

dζ = 1

6

[
s2

1

(1 + s1)2 + s2
(
s1(2s2

1 + 9s1 + 6)− 6(1 + s1)2 ln(1 + s1)
s2

1 (1 + s1)2

)]
.

(E.3)

If we fix s2, I2 increases as s1 increases or decreases away from zero. We note that for the expression in Eq. (E.3),
I2 ∼ 1

6 s
2
1 (1 + 1

2 s2) when s1 � 1. A similar behavior is found for I2 with r(φ) = φ2(3 − 2φ).
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