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Abstract

We develop a phase-field model for the solidification of a pure material that includes convection in the liquid phase.
The model permits the interface to have an anisotropic surface energy, and allows a quasi-incompressible thermodynamic
description in which the densities in the solid and liquid phases may each be uniform. The solid phase is modeled as an
extremely viscous liquid, and the formalism of irreversible thermodynamics is employed to derive the governing equations.
We investigate the behavior of our model in two important simple situations corresponding to the solidification of a planar
interface at constant velocity: density change flow and a shear flow. In the former case we obtain a non-equilibrium form of the
Clausius–Clapeyron equation and investigate its behavior by both a direct numerical integration of the governing equations,
and an asymptotic analysis corresponding to a small density difference between the two phases. In the case of a parallel shear
flow we are able to obtain an exact solution which allows us to investigate its behavior in the sharp interface limit, and for
large values of the viscosity ratio. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Diffuse theories of interfaces separating two bulk phases were developed in the 19th century by Poisson [1], Gibbs
[2], Maxwell [3], Rayleigh [4] and van der Waals [5]. Previously, interfaces had been modeled by Young, Laplace
and Gauss as surfaces. In the latter formulation the interface is regarded as a singular surface on which associated
physical mechanisms are localized and represented as boundary conditions to be applied at the surface; e.g., the
notion of surface energy as an energy per unit area of the interfacial surface. This description of a phase boundary
is sometimes referred to as a ‘sharp interface’ model and results in a so-called ‘free boundary problem’. In contrast,
diffuse interface theories recognize that, in reality, the interface has a finite thickness (albeit small compared with
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typical macroscopic length scales) in which physical quantities, such as density or composition, vary between their
values in the adjacent bulk phases (see, e.g., [6,7]). Quantities that in the sharp interface formulation are regarded
as localized to the interfacial surface are, in the diffuse interface setting, identified as being distributed within the
interfacial region. For example, the surface energy of an isothermal interface is derived from the elevated Helmholtz
free energy density throughout the whole interfacial region.

Diffuse interface models may be based on an extended thermodynamics involving gradients of the thermodynamic
variables to account for non-local effects. Originally such theories were formulated to investigate liquids near their
critical point and have subsequently been refined and developed to account for a wide range of physical situations,
such as liquid crystals [8], superconductivity [9], spinodal decomposition [10,11] and ordering transitions in alloys
[12–14]. Rowlinson and Widom [15] provide a thorough account of their historical development.

The phase-field model of the first-order phase transition associated with the solidification of a pure material
was first proposed by Langer [16,17] and subsequently developed by a number of researchers [18–23]. Phase-field
models provide an example of a diffuse interface model in which an order parameter,φ, is postulated whose value
indicates the phase of the system at a particular point in space and time (in this paperφ = 1 andφ = 0 denote
the solid and liquid phases, respectively). Langer represented the free energy of a single-component system by a
gradient energy functional of the form

F =
∫
V

{1
2ε2|∇φ|2 + f (φ, T )} dV, (1)

whereε is the gradient energy coefficient andT is the temperature. The free energy density,f (φ, T ), has a
double-well structure with respect toφ in which the two local minima correspond to the solid and liquid phases.
Langer proposed the following governing equations for the phase field and temperature:

M
∂φ

∂t
= −δF

δφ
=
{
ε2∇2φ − ∂f

∂φ

}
, (2)

c
∂T

∂t
= k∇2T + L

∂φ

∂t
, (3)

where 1/M is a positive constant termed the mobility,c is the heat capacity,k the thermal conductivity andL
the latent heat per unit volume of the material. This phase-field formulation replaces the free-boundary problem
associated with the sharp interface model of an interface by a coupled pair of non-linear reaction diffusion equations.
The location of the interface is represented by the level setφ = 1/2.

The original derivation of the phase-field equations was justified by requiring the free energy of the system to
decrease monotonically in time. The equation for the temperature (3) was based on a modification of the heat equation
to allow a source term that accounts for latent heat production at a moving interface. Subsequently, Penrose and Fife
[23] and others [24–27] applied the arguments of irreversible thermodynamics to the derivation of the phase-field
equations, establishing that they are consistent with non-negative local entropy production.

The phase-field equations have been extended to allow for anisotropic surface energy by a number of authors
[20,28,29]. In particular, Kobayashi [28] proposed that the gradient energy coefficient,ε, may be regarded as a
function of∇φ in order to model surface energy anisotropy, and Taylor and Cahn [30,31] suggested that the square
gradient term in the free energy functional be replaced by [Γ (∇φ)]2, whereΓ (∇φ) is a homogeneous degree one
function of its argument. Wheeler and McFadden [32] showed how this formulation could be used to define a
generalized form of theξ -vector [33,34], which provides an elegant description of surface energy anisotropy. If we
denoteEp = ∇φ, then theξ -vector is a homogeneous function ofEp of degree zero with components given by

ξj ( Ep) = ∂

∂pj

Γ ( Ep); (4)
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Eξ satisfies the fundamental relation [33]

dΓ ( Ep) = Eξ · d Ep. (5)

For an isotropic surface energy, this givesEξ = ∇φ/|∇φ|.
The relation between the phase-field equations and the free-boundary formulation can be established by examining

the so-called sharp interface limit of the phase-field equations. The phase-field equation has solutions in which
fronts form with a width proportional toε whereinφ varies between zero and one; the fronts represent interfaces.
By investigating solutions of the phase-field equations in the limitε → 0, Caginalp [22] showed that the governing
equations of the phase-field model converge to a sharp interface model with associated boundary conditions, i.e.,
a free-boundary problem. By considering different distinguished limits Caginalp showed that a variety of different
free-boundary problems emerge in the sharp interface limit, most of which are different forms of the classical
Stefan problem, as well as the Hele–Shaw problem. Karma and Rappel [35] also examined different distinguished
limits that allow more flexible interpretations of interface kinetics to be used in numerical calculations. For the
anisotropic phase-field model McFadden et al. [36] obtained, in the sharp interface limit, the anisotropic version of
the Gibbs–Thomson equation in two dimensions. Subsequently, Wheeler and McFadden [32] extended this analysis
to three dimensions by employing the generalizedξ -vector.

One of the main advantages of the phase-field formulation over the free-boundary problem lies in its potential
to compute realistic and complex interface shapes associated with dendritic growth. Early calculations [37] were
restricted by the available computing power to simple interface geometries. Kobayashi [28] identified the importance
of surface energy anisotropy for the computation of dendritic growth and exhibited computational results corre-
sponding to both two-and three-dimensional dendrites. Subsequently, numerous workers [29,38–41] have refined
the computational technique, provided numerical solutions with improved accuracy, and addressed issues related to
the viability of the computational approach.

The phase-field model described above does not include coupling to the momentum equation and viscous stress
tensor of classical hydrodynamics. The aim of the present paper is to formulate a phase-field model that is fully
coupled to the equations of hydrodynamics in a self-consistent manner. We shall find that this requires the inclusion
of an additional stress tensor associated with the diffuse interface. Wheeler and McFadden [42] showed, using
Noether’s theorem (see, e.g., [43]) that associated with the steady phase-field (2) there exists a second rank tensor

ΞΞΞ =
[

1
2ε2|∇φ|2 + f

]
III − ε2∇φ ⊗ ∇φ, (6)

where⊗ denotes the outer product (see Appendix A) andIII is the unit tensor, which satisfies the conservation law
∇ · ΞΞΞ = 0. ΞΞΞ represents the part of the stress tensor that results in capillary forces within the interfacial region.
This conservation law has also been derived by Fried and Gurtin [44,45] using an alternative approach employing
configurational forces. The tensorΞΞΞ is the counterpart of the capillary tensor [46] that acts as the reversible part of
the stress tensor in the theory of fluids near a critical point; the irreversible part is provided by the standard viscous
stress term of a Newtonian liquid.

In the original theory for a critical fluid, the density, which satisfies the continuity equation, is treated as the
order parameter and appears instead ofφ in the capillary tensor analogous to Eq. (6). The momentum equation,
modified to include the divergence of the capillary tensor, governs the flow while an equation of state relates the
pressure, temperature, and density. This original theory for a critical fluid has been extended to investigate a range
of hydrodynamic phenomena including capillary waves, moving contact lines, droplets and nucleation [47]. In
the context of a binary fluid, the composition may play the role of a conserved order parameter that satisfies a
Cahn–Hilliard equation [10]. A variety of situations have been studied ranging from spinodal decomposition to
thermocapillary flow; the review by Anderson et al. [47] and references therein provide further details. An early
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attempt to include fluid motion within a phase-field model is due to Caginalp and Jones [48,49]. They appended
the inviscid momentum equation and the continuity equation to the phase-field model, but did not address the
issues of momentum balance in the solid and capillary contributions to the stress tensor. Diepers et al. [50] have
employed the methodology of two-phase fluid flow, whereφ is interpreted as a solid fraction. Their model is used to
study coarsening in a binary solid/liquid mixture with and without flow. Tönhardt and Amberg have also performed
two-dimensional numerical studies using adaptive finite elements to study the effects of a shear flow on dendritic
growth morphology [51,52].

In this paper we bring together several ideas to develop a phase-field model which allows for convection in the
liquid phase. Our model has two notable aspects: first, we represent both the solid and liquid phases as Newtonian
fluids in which the viscosity of the putative solid phase is specified to be much larger than that of the liquid phase.
Second, the interface is ascribed an anisotropic surface energy, which is non-standard for a model which treats
the two phases as Newtonian fluids. These unconventional features are in keeping with our intention to model a
solid–liquid system. In order to obtain the desired viscosity variation between the phases, the viscosity is assumed
to depend on the phase field,φ. The anisotropic surface energy is achieved by employing the generalizedξ -vector
formalism [42]. Unlike previous diffuse interface models, which incorporate fluid motion coupled to a conserved
order parameter description [47], we adopt a non-conserved order parameter,φ, in line with our aim of directly
extending conventional phase field models of solidification to account for convection. This has the advantage that
we may treat quasi-incompressible systems [53] in which the density of the solid and liquid bulk phases are each
spatially uniform by allowing the density,ρ, to be a prescribed function ofφ.

With these assumptions we develop the irreversible thermodynamics of the model from gradient functionals for
both the entropy and internal energy. We identify governing equations that are consistent with the first and second
laws of thermodynamics. The quasi-incompressibility assumption, which allows the density to depend solely onφ

and not the pressure,p, restricts the form of the thermodynamic potentials that may be employed [53]. The model
comprises the compressible Navier–Stokes equations with a modified stress tensor which includes additional terms
related toΞΞΞ as given in Eq. (6), an energy equation and a phase-field equation involving a material time derivative
of φ.

In order to investigate and validate this new model we examine it in some simple situations. First, we consider an
isothermal planar interface at equilibrium. We show that the model recovers the classical equilibrium state in which
the chemical potential and pressure are equal in each bulk phase and the changes in temperature and pressure for
coexistence are related to the density and entropy mismatch of the two phases by the Clausius–Clapeyron equation.
We then investigate the non-equilibrium situation in which the planar interface advances with constant velocity
and an advective flow is induced in the liquid due to the density mismatch. We derive a non-equilibrium form of
the Clausius–Clapeyron equation, obtain numerical solutions and conduct an asymptotic analysis for small density
mismatch. Finally, we investigate the situation in which a planar interface advances with constant speed into the
melt with a parallel shear flow ahead of it. We are able to obtain closed form solutions and investigate them in both
the sharp-interface limit as well as the limit in which the viscosity of the solid is much greater than that in the liquid.

2. The model

We consider a non-isothermal system consisting of a pure material that may exist in two distinct phases. We
follow the standard phase-field methodology and introduce a phase-field variable,φ(Ex, t), whose value indicates
the thermodynamic phase of the system as a function of time,t , and position,Ex. Both phases are treated as fluids,
although in the applications we will assume that one phase has a much larger viscosity and interpret it as an
approximation to a solid phase. In many solidification applications, a fluid model is used for the thermodynamic
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description of the the solid phase, in that the elastic properties of the solid are ignored. We will also consider that
the phase transition is first order and has an anisotropic surface energy, which is unconventional for a fluid–fluid
system, but is consistent with our intention to model a solid–liquid system. We adopt the convention thatφ = 0
denotes the liquid phase andφ = 1 denotes the solid phase. A solid–liquid interface is represented by a thin layer in
which the phase field varies rapidly between zero and unity. The governing equations are derived by following the
formalism of irreversible thermodynamics [54], as originally applied to the phase-field equations by Penrose and
Fife and others [23–25]. The steady-state versions of the equations can also be obtained by appealing to variational
arguments as in Ref. [42]. Derivations based on mechanical microforce balance laws, as developed by Gurtin et al.
[55,56], are also possible.

2.1. Non-equilibrium equations

We assume that the total entropy,S, in a material volume,Ω(t), of the system is given by

S =
∫
Ω(t)

[
ρs − 1

2ε2
SΓ 2(∇φ)

]
dV, (7)

whereρ is the density ands the entropy per unit mass. The first term in the integrand,ρs, is the classical entropy
density (per unit volume) and the second is a non-classical term associated with spatial gradients of the phase field.
Here the gradient entropy coefficientεS is assumed to be a constant for simplicity, andΓ is a homogeneous function
of degree unity. As we show below, the functionΓ allows for a general anisotropic surface energy of the solid–liquid
interface. An isotropic surface energy results from the choiceΓ (∇φ) = |∇φ|.

The total mass,M, linear momentum,EP, and internal energy,E , associated with the material volume are assumed
to have the form

M =
∫
Ω(t)

ρ dV, (8)

EP =
∫
Ω(t)

ρ Eu dV, (9)

E =
∫
Ω(t)

[ρe + 1
2ρ|Eu|2 + 1

2ε2
EΓ 2(∇φ)]dV, (10)

respectively.1 Here Eu is the velocity,e the internal energy density (per unit mass) andεE the gradient energy
coefficient, which is assumed to be constant. The thermodynamic relations

de = T ds + p

ρ2
dρ + ∂e

∂φ
dφ, (11)

e = T s − p/ρ + µ, (12)

are assumed to apply locally, wherep is the thermodynamic pressure andµ is the chemical potential (or Gibbs free
energy per unit mass).

The physical balance laws for mass, linear momentum, and internal energy are given by

dM

dt
= 0, (13)

1 For simplicity we omit a possible gradient term in the density functionalM; its inclusion modifies the continuity equation and replaces the
gradient Helmholtz free energy coefficientεF in Eqs. (29) and (35) by a gradient coefficientεK corresponding to a thermodynamic, or Kramers,
potential function. This is briefly indicated in Section 2.2.
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d EP
dt

=
∫
δΩ(t)

n̂ · mmm dA, (14)

dE

dt
+
∫
δΩ(t)

EqE · n̂ dA =
∫
δΩ(t)

n̂ · mmm · Eu dA, (15)

respectively, wherên is the outward unit normal toδΩ(t), mmm the stress tensor, andEqE the internal energy flux.
The momentum balance (14) requires that the rate of change of the total momentum of the material volume results
from forces acting on its boundaryδΩ(t) (for simplicity we neglect body forces such as gravity; their inclusion is
straightforward). The energy balance (15) equates the rate of change of the total internal energy ofΩ(t) plus the
energy flux through its boundary to the rate of work of the forces at its boundary.

In addition, the entropy balance takes the form

dS

dt
+
∫
δΩ(t)

EqS · n̂ dA =
∫
Ω(t)

ṡproddV, (16)

whereEqS is the entropy flux anḋsprod is the local rate of entropy production. The second law of thermodynamics
is then expressed by the requirement thatṡprod is non-negative.

To proceed we recast the conservation laws (13)–(16) as differential equations. These are used to express the
local entropy production in terms of the fluxesmmm, EqE, andEqS, as well as Dφ/Dt . We then identify forms for these
quantities which ensure that the local entropy production is non-negative. The fluxes that result from this procedure
involve both classical contributions and non-classical contributions that depend on∇φ. In addition, we obtain an
evolution equation for the phase field.

Applying the Reynolds transport theorem [57] to the mass balance law (13) gives the continuity equation in its
conventional form

Dρ

Dt
+ ρ∇ · Eu = 0, (17)

where the material derivative ofρ is denoted by Dρ/Dt = ∂ρ/∂t + (Eu · ∇)ρ. Similarly, the linear momentum
equation takes the form

ρ
DEu
Dt

= ∇ · mmm, (18)

where, ifmjk denotes the components ofm, then∇ · mmm has components∂mjk/∂xj .
The energy equation is more complicated, and we discuss it in more detail. From Eq. (15) it follows that∫

Ω(t)

[
ρ

De

Dt
+ ρ Eu · DEu

Dt
− ∇ · (mmm · Eu) + ∇ · EqE

]
dV + d

dt

∫
Ω(t)

1
2ε2

EΓ 2(∇φ)dV = 0. (19)

In Appendix A we show that

d

dt

∫
Ω(t)

1
2Γ 2(∇φ)dV =

∫
Ω(t)

QG dV, (20)

where

QG = ∇ ·
(

Γ Eξ Dφ

Dt

)
− Dφ

Dt
∇ ·

(
Γ Eξ
)

− Γ ∇Eu : Eξ ⊗ ∇φ + 1
2Γ 2∇ · Eu. (21)

Here we have introduced the Cahn–Hoffmanξ -vector [33] for a diffuse interface [42] as given by Eq. (4). Hence
we deduce that

ρ
De

Dt
+ ρ Eu · DEu

Dt
− ∇ · (mmm · Eu) + ∇ · EqE + ε2

EQG = 0. (22)
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We now employ the conservation of linear momentum (18) to rewrite this equation as

ρ
De

Dt
+ Eu · (∇ · mmm) − ∇ · (mmm · Eu) + ∇ · EqE + ε2

EQG = 0, (23)

which on using the identity

∇ · (mmm · Eu) = (∇ · mmm) · Eu + mmm : ∇Eu, (24)

simplifies to yield the energy equation as

ρ
De

Dt
+ ∇ · EqE = mmm : ∇Eu − ε2

EQG. (25)

Heremmm : ∇Eu = mkj∂uj /∂xk (with summation over repeated indices implied). In an analogous way, the entropy
balance (16) leads to the result

ρ
Ds

Dt
+ ∇ · EqS = ṡprod + ε2

SQG. (26)

The thermodynamic relation between Ds/Dt and De/Dt follows from Eq. (11) and is given by

De

Dt
= T

Ds

Dt
+ p

ρ2

Dρ

Dt
+ ∂e

∂φ

Dφ

Dt
. (27)

The continuity equation (17) and Eqs. (21), (25) and (27) can be used to express the entropy production given by
Eq. (26) as

ṡprod = 1

T

{
mmm + ε2

FΓ Eξ ⊗ ∇φ +
[
p − ε2

F

2
Γ 2

]
III

}
: ∇Eu + 1

T

{
ε2

F∇ · (Γ Eξ) − ρ
∂e

∂φ

}
Dφ

Dt

+ ∇ ·
(

EqS − EqE

T
− ε2

F

T
Γ Eξ Dφ

Dt

)
+
(

EqE + ε2
EΓ Eξ Dφ

Dt

)
· ∇

(
1

T

)
, (28)

whereε2
F = ε2

E + T ε2
S.

We now make the following choices for the constitutive equations for the fluxes and Dφ/Dt which ensure that
ṡprod is positive

mmm =
[
−p + ε2

F

2
Γ 2

]
III − ε2

FΓ Eξ ⊗ ∇φ + τττ , (29)

M
Dφ

Dt
= ε2

F∇ · (Γ Eξ) − ρ
∂e

∂φ
, (30)

EqE = k̃∇
(

1

T

)
− ε2

EΓ Eξ Dφ

Dt
, (31)

EqS = k̃

T
∇
(

1

T

)
+ ε2

SΓ Eξ Dφ

Dt
. (32)

Hereτττ is the viscous stress tensor, which for a Newtonian fluid is given byτττ = µ(∇Eu + ∇EuT ) + λ(∇ · Eu)III , where
µ andλ are coefficients of viscosity,III is the unit tensor, andM is a positive mobility coefficient which we take
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to be constant. A constant value for the thermal conductivityk corresponds to the choicẽk = T 2 k. The resulting
equations of motion assume the form

Dρ

Dt
= −ρ∇ · Eu, (33)

ρ
DEu
Dt

= ∇ ·
[(

−p + 1
2ε2

FΓ 2
)

III − ε2
FΓ Eξ ⊗ ∇φ + τττ

]
, (34)

M
Dφ

Dt
= ε2

F∇ · (Γ Eξ) − ρ
∂e

∂φ
, (35)

ρ
De

Dt
= ∇ · [k∇T ] + ε2

E∇ · (Γ Eξ)
Dφ

Dt
+
[(

−p + 1

2
T ε2

SΓ 2
)

III − T ε2
SΓ Eξ ⊗ ∇φ + τττ

]
: ∇Eu. (36)

2.2. Equilibrium equations

The equilibrium form of the above governing equations withEu = 0 admits an isothermal solution that also
satisfies

0 = ∇ ·
[(

−p + ε2
F

2
Γ 2

)
III − ε2

FΓ Eξ ⊗ ∇φ

]
, (37)

0 = ε2
F∇ · (Γ Eξ) − ρ

∂e

∂φ
. (38)

By applying the divergence operator in (37) and using the fundamental relation (5), Eq. (37) can be reduced to the
form

0 = ∇p + ε2
F∇ · (Γ Eξ) ∇φ. (39)

These equations also result directly from a variational formulation, which may be stated equivalently as either an
entropy maximization or an energy minimization; we briefly sketch the latter argument. We temporarily include a
gradient coefficientεM in the density functional (8) to illustrate the appearance of the thermodynamic, or Kramers,
potential function in the formulation; we subsequently setεM = 0 to recover the simpler model that we consider in
the remainder of the paper.

We consider a convection-free equilibrium state, and set

0 = δ(E − λSS − λMM) = δ

∫
V

[
ρe − λSρs − λMρ + (ε2

E + λSε2
S − λMε2

M)

2
Γ 2(∇φ)

]
dV, (40)

whereλS andλM are Lagrange multipliers that are introduced to account for the constraints of constant total entropy
and mass. Taking variations with respect toδs, δρ, andδφ gives

0 = ρes − λSρ, (41)

0 = e + ρeρ − λSs − λM, (42)

0 = ρeφ − (ε2
E + λSε2

S − λMε2
M)∇ · (Γ Eξ), (43)

respectively. Eq. (41) implies that the temperatureT = es is uniform and equal to the Lagrange multiplierλS.
Using the relationeρ = p/ρ2, Eq. (42) gives thatλM = e + p/ρ − T s = µ is also constant. In Eq. (43) it
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follows thatε2
E + λSε2

S − λMε2
M = ε2

E + T ε2
S − µε2

M = ε2
K , whereεK is a gradient coefficient corresponding to the

thermodynamic, or Kramers, potential functionρe −ρT s−ρµ. SettingεM = 0 replacesεK by the Helmholtz free
energy coefficientεF defined byε2

F = ε2
E + λSε2

S, so that Eq. (43) becomes identical to Eq. (38). We henceforth set
εM = 0, so thatεK reduces toεF.

The equivalence of Eqs. (43) and (39) results from the Gibbs–Duhem equation, which for constant values ofT

andµ implies that

−∇p = ρeφ∇φ. (44)

Alternatively, an application of Noether’s theorem [43] to the translationally invariant functionalL = −p + 1
2ε2

FΓ 2

in Eq. (40), where−p = ρe − ρT s − ρµ, leads to a divergence-free stress tensor [42]

ΞΞΞ = LIII − ∂L

∂∇φ
⊗ ∇φ, (45)

which is identical to the equilibrium form formmm in Eq. (29) withτττ = 0, that also appears in Eq. (37).
Equilibrium is therefore characterized by uniform temperature and chemical potential. In contrast, there are

pressure gradients in the interfacial regions where∇φ 6= 0, although the far-field pressures in the bulk phases are
equal.

2.3. Quasi-incompressible thermodynamics

In order to study situations in which the density in each phase is uniform, it is convenient to adopt a thermodynamic
formation which does not employ the density as an independent variable, as in the model of quasi-incompressible
flow considered by Lowengrub and Truskinovsky [53] and also in the work of Rooney et al. [58] on modeling thermal
expansion in a Newtonian fluid. We therefore choose the pressure and temperature as independent variables, and
work with a Gibbs free energy per unit mass,g(T , p, φ), which, aside from its argument, is formally identical to
the chemical potentialµ(ρ, T , φ) appearing in Eq. (12). The internal energy per unit mass may then be written in
the form

e = g(T , p, φ) + T s(T , p, φ) − p

ρ(T , p, φ)
, (46)

where we note the identities

s(T , p, φ) = − ∂g

∂T

∣∣∣∣
p,φ

,
1

ρ(T , p, φ)
= ∂g

∂p

∣∣∣∣
T ,φ

,
∂e

∂φ

∣∣∣∣
s,ρ

= ∂g

∂φ

∣∣∣∣
p,T

, (47)

where the variables which are held constant in forming the various derivatives are indicated explicitly. We prescribe
the density as a function of the phase-field variableφ alone,

ρ(φ) = ρSr(φ) + ρL [1 − r(φ)] , (48)

where the solid and liquid densitiesρS andρL of the bulk phases are constants, andr(φ) is a smooth monotonic
function that hasr(0) = 0 andr(1) = 1; we will taker(φ) = φ2(3 − 2φ). Then, from Eq. (47) we note that since
ρ is independent of the pressure, the Gibbs free energy may be expressed in the form

g(T , p, φ) = g0(T , φ) + (p − p0)

ρ(φ)
, (49)

wherep0 is a reference pressure. The functiong0(T , φ) is assumed to have the form

g0(T , φ) =
[
e0 − cTM − r(φ)L + 1

4aS
H(φ)

](
1 − T

TM

)
− cT ln

(
T

TM

)
+ 1

4a
H(φ). (50)
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Heree0 is a constant reference energy, the heat capacity per unit massc and latent heat per unit massL are assumed
to be constant,TM is the melting point at the reference pressurep0, aS anda are constants, andH(φ) is a double-well
potential, which we will assume is given byH(φ) = φ2(1 − φ)2. This form forg0 is consistent with an internal
energy which is a linear function of temperature, which leads to the classical heat equation in the bulk liquid [25].

The corresponding expressions for the entropy and internal energy are then

s = 1

TM

{
e0 − r(φ)L + 1

4aS
H(φ)

}
+ c ln

(
T

TM

)
, (51)

e = e0 + c(T − TM) − r(φ)L +
[

1

4aS
+ 1

4a

]
H(φ) − p0

ρ(φ)
. (52)

3. Examples

In this section planar solidification fronts moving with constant speedV are examined. In this case, the anisotropy
of the surface energy plays no role, and we assumeΓ (∇φ) = |∇φ|. The solutions are assumed to depend only
on the vertical variablez = z′ − V t , wherez′ is measured in the rest frame of the solid, and the one-dimensional
solutions are time-independent functions ofz. The velocity is measured in the rest frame, so that the velocity vanishes
in the absence of driving forces. In the moving frame, the governing equations (33)–(36) can then be expressed
as conservation laws for mass, horizontal and vertical components of momentum, and energy, together with the
phase-field equation, as

0 = d

dz
[ρ(w − V )] , (53)

0 = d

dz

[
ρ(w − V )u − µ(φ)

du

dz

]
, (54)

0 = d

dz

[
ρ(w − V )w +

{
p + 1

2
ε2

F

(
dφ

dz

)2
}

− [2µ(φ) + λ(φ)]
dw

dz

]
, (55)

0= d

dz

[
ρ(w − V )

{
e + 1

2
(u2 + w2)

}
− ε2

E

2
(w − V )

(
dφ

dz

)2

− k(φ)
dT

dz
− µ(φ)u

du

dz

− [2µ(φ) + λ(φ)]w
dw

dz
+ w

{
p + 1

2
ε2

F

(
dφ

dz

)2
}]

, (56)

0 = ε2
F

d2φ

dz2
− M(w − V )

dφ

dz
− ρ

∂g

∂φ
, (57)

respectively. Here for simplicity we consider a two-dimensional flowEu = uEi + w Ek with horizontal and vertical
velocity componentsu andw in thex andz directions, respectively. The material propertiesk, µ, andλ are assumed
to be constant in each bulk phase, depending only onφ.

3.1. Equilibrium of a planar interface

The solution for a stationary planar interface in the absence of convection includes the conditions for thermody-
namic equilibrium, and represents a special case of the discussion in Section 2.2. The sample is assumed to occupy
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the region−∞ < z < ∞, with φ(z) → 1 asz → −∞ andφ(z) → 0 asz → ∞. The density and horizontal
momentum equations are satisfied identically. The energy equation admits an isothermal solution, and the remaining
equations (55) and (57) give

ε2
F

d2φ

dz2
− ρ(φ)

∂g

∂φ
= 0, (58)

and

p = p∞ − ε2
F

2

(
dφ

dz

)2

, (59)

wherep∞ is the common value of the pressure in the bulk phases where the gradient of the phase field tends to
zero. By using Eqs. (58) and (59), the derivative ofg(p, T , φ) with respect toz vanishes, and so represents a first
integral for the system as noted in Section 2.2. Upon elimination of the pressure, Eq. (58) represents a second-order
differential equation for the determination ofφ; some numerical examples are given below.

Equating the bulk values of the chemical potential by settingg(p∞, T , 0) = g(p∞, T , 1) in Eq. (49) gives an
integrated form of the Clausius–Clapeyron relation [59],

(p∞ − p0)

[
1

ρS
− 1

ρL

]
= L

(
1 − T

TM

)
, (60)

which gives the dependence of the phase transition temperature on the pressure; here we recall thatTM is the
melting point at the reference pressurep0. Bulk equilibrium values for a one-dimensional planar equilibrium state
are therefore completely determined if, say, the far-field value of the pressure in the solid is given, since the far-field
pressure in the liquid is the same, and the Clausius–Clapeyron relation then provides the value of the temperature.
Bulk values for the other thermodynamic variables follow from the known values of the temperature and pressure.

We note that LaCombe et al. [60] have proposed to take advantage of the relatively rapid response of the melting
point to pressure changes in dynamic solidification studies. For example, during dendritic growth the response of the
tip operating conditions to pressure-induced changes in the bulk melting point can be examined in this way. We also
note that Maruyama et al. [61] have examined transitions in the kinetic growth shapes of iceIh, from a circular disc
to a hexagonal plate, in response to pressure-induced alterations of the melting point near the roughening transition.

3.2. Density-change flow

Here we consider the steady flow normal to a moving planar solidification front that is generated by unequal solid
and liquid densities; the horizontal momentum equation is then satisfied identically. For simplicity of discussion
we consider motion that is dominated by the effects of interface attachment kinetics rather than diffusion; that
is, diffusion is sufficiently rapid that the system remains in thermal equilibrium, and the rate of solidification is
determined by the deviation of the temperature from the equilibrium melting point. We therefore ignore the equation
for energy conservation, and assume an isothermal system.

The conservation of mass equation (53) implies that

ρ(w − V ) = Jm, (61)

where the constantJm represents the mass flux through the interface. For a stationary solid we haveJm = −ρSV ,
and

w = −V

(
ρS

ρ(φ)
− 1

)
. (62)
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The flow velocity in the liquid far from the interface is thenw∞
L = −V (ρS/ρL −1), representing a contraction flow

if the solid is more dense than the liquid.
The vertical momentum equation (55) gives

p − p∞
S = −Jmw − 1

2
ε2

F

(
dφ

dz

)2

+ [2µ(φ) + λ(φ)]
dw

dz
, (63)

where the constantp∞
S represents the pressure in the solid in the far field. The difference in the far-field pressures

in the solid and liquid is then given by

p∞
S − p∞

L = Jmw∞
L = ρSV 2

(
ρS

ρL
− 1

)
, (64)

which is analogous to the “vapor recoil” effect in a liquid–vapor system; i.e., a contraction flow raises the pressure
in the solid relative to that in the liquid.

In addition to the jump in the bulk pressure for a moving interface, there is a jump in the chemical potential
that is determined by the phase-field equation (57); this results in a generalized version of the Clausius–Clapeyron
equation in which the effect of pressure on the melting point is altered by the rate of solidification. A calculation
gives

g∞
L − g∞

S = MρSV

∫ ∞

−∞
1

ρ(φ)2

(
dφ

dz

)2

dz − V 2

2

[(
ρS

ρL

)2

− 1

]
+ 1

ρSV

∫ ∞

−∞
[2µ(φ) + λ(φ)]

(
dw

dz

)2

dz,

(65)

where we recall from Eq. (62) thatw(z) is proportional toV and vanishes ifρS = ρL. This shows that the jump
in chemical potential has a term linear in the solidification rate that depends on the phase-field profileφ(z), a term
proportional toV 2 involving the square of the density difference, and a viscous dissipation term proportional toV

(since(dw/dz)2 is proportional toV 2). By using Eq. (64) for the pressure differencep∞
S − p∞

L , this expression
can be written in the form

L

(
1 − T

TM

)
− (p∞

S − p0)

[
1

ρS
− 1

ρL

]
= MρSV

∫ ∞

−∞
1

ρ(φ)2

(
dφ

dz

)2

dz + V 2

2

(
ρS

ρL
− 1

)2

+ 1

ρSV

∫ ∞

−∞
[2µ(φ) + λ(φ)]

(
dw

dz

)2

dz. (66)

For the special case ofρL = ρS only the first integral on the right-hand side remains, and we recover the conventional
phase-field description of kinetically controlled growth, in whichφ(z) has a hyperbolic tangent profile, and the
growth velocity is proportional to the product of 1/M and the deviation of the temperature from its equilibrium
value. The general case requires a numerical solution to determine the phase-field profile; in the following section
we describe an approximate solution which is valid if the density difference between the liquid and solid phases is
small.

3.2.1. Asymptotic solution
In this section we study the simplified case where the solid and liquid densities are nearly equal. We define the

density mismatch parameter,δ, by

ρS = ρL(1 + δ) (67)
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and consider the solution of Eqs. (53)–(57) in the limitδ → 0. We introduce the expansions

φ = φ0 + δφ1 + · · · , (68)

V = V0 + δV1 + · · · , (69)

and solve Eq. (57) forφ andV . The vertical component of velocity and the pressure are given by Eqs. (62) and (63),
respectively. The density profile is given by Eq. (48), and the resulting vertical component of velocity is small, with
w = O(δ).

The O(1) problem forφ0 is given by

ε2
F

d2φ0

dz2
+ MV0

dφ0

dz
− ρL

∂g0

∂φ
= 0, (70)

whereg0 is the free energy evaluated atφ0 (under isothermal conditions). This equation has the solution

φ0(z) = 1
2 [1 − tanh(z/`ε)] , (71)

where the constant̀ε , which characterizes the thickness of the interface, is

`ε = 2εF

√
2a0(T )

ρL
. (72)

Here

1

a0(T )
= 1

a
+ 1

aS

(
1 − T

TM

)
, (73)

and the leading order interface speed is related to the temperature by

MV0 = 6LεF
√

2ρLa0(T )

(
1 − T

TM

)
. (74)

In the limit of vanishing double-well height ratio,a/aS → 0, the velocity of the interface depends linearly on
the difference in temperature from the melting temperatureTM. WhenT < TM the leading order interface velocity
V0 is positive (i.e. the liquid solidifies) and whenT > TM the interface velocity is negative (i.e. the solid melts).

The O(δ) problem forφ1 is given by

Lφ1 ≡ ε2
F

d2φ1

dz2
+ MV0

dφ1

dz
− ρL

∂2g0

∂φ2
φ1 = R, (75)

where

R = −MV1
dφ0

dz
− MV0[1 − r(φ0)]

dφ0

dz
+ ρLr(φ0)

∂g0

∂φ
−
[
p∞

S − p0 − 1

2
ε2

F

(
dφ0

dz

)2
]

r ′(φ0). (76)

Here we have used a density profile of the form (48).
The operatorL appearing in Eq. (75) can be written in self-adjoint form by first multiplying the equation by

exp(MV0z/ε
2
F). Upon noting that dφ0/dz is a solution to the homogeneous problem,Lφ1 = 0, we deduce the

solvability condition

0 =
∫ ∞

−∞
eηz dφ0

dz
Rdz, (77)
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whereη = MV0/ε
2
F. Evaluating this integral gives

MV1Q1(V0) = −(p∞
S − p0)Q2(V0) + MV0Q3(V0) + 1

2ε2
FQ4(V0), (78)

whereQ1(V0), Q2(V0), Q3(V0), Q4(V0) are the following integrals:

Q1(V0) =
∫ ∞

−∞
exp(ηζ ) [φ′

0(ζ )]2 dζ, (79)

Q2(V0) =
∫ ∞

−∞
exp(ηζ ) r ′(φ0(ζ ))φ′

0(ζ ) dζ, (80)

Q3(V0) =
∫ ∞

−∞
exp(ηζ ) [2r(φ0(ζ )) − 1][φ′

0(ζ )]2 dζ, (81)

Q4(V0) =
∫ ∞

−∞
exp(ηζ )

d

dζ

{
[φ′

0(ζ )]2r(φ0(ζ ))
}

dζ. (82)

Eq. (78) gives the the velocity correction,V1, in terms ofV0 and p∞
S − p0. Note thatV0 is related to the

temperature by Eq. (74) and hence Eq. (78) can be regarded as determining the interface velocity in terms of the
pressure and temperature. This relation represents the asymptotic approximation to O(δ) of the non-equilibrium
Clausius–Clapeyron relation given in Eq. (66). From Eq. (66) we observe that to first order inδ the only contribution
from the non-equilibrium terms is due to interfacial kinetics represented by the first integral on the right-hand side.

The results of this asymptotic analysis are presented below in conjunction with the numerical results for general
values of the solid and liquid densities.

3.2.2. Numerical solution
We next we present numerical solutions of the one-dimensional system of governing equations (53)–(57). Our

aim is to solve for the phase-field profile and the solidification front velocity as the temperature and far-field pressure
in the solid vary, and compare the results with our small-δ asymptotic analysis.

We solve Eq. (57) for the phase field withw andp given in terms ofφ by Eqs. (62) and (63), respectively.
The numerical procedure involves a finite difference discretization of the governing equation (57) on the domain
−L < z < L (whereL is taken to be sufficiently large so as to not influence the results of the calculations).
Neumann boundary conditions (dφ/dz = 0) are applied atz = ±L and we require that the integral ofφ − 1/2 is
zero, which both fixes the position of the interface nearz = 0 and provides an additional equation that allows the
determination of the interface velocity for given values of the temperature and far-field pressure in the solid. The
discretized system of non-linear equations is solved using Newton iteration by employing the softwaresnsq [62]
The programsnsq was written by K.L. Hiebert and is based on an algorithm of Powell [63].

In Fig. 1 the solid curves display numerical results for the variation of the interface velocity with temperature for
three different values of the pressurep∞

S , using the material parameters for lead given in Table 1. We put

µ(φ) = µSr(φ) + µL[1 − r(φ)], (83)

wherer(φ) = φ2(3φ−1), andµS andµL are the dynamic viscosities of the bulk solid and liquid phases, respectively.
We useµS/µL = 1 andλ(φ) = −2µ(φ)/3 in accordance with the Stokes hypothesis. In these calculationsρS > ρL

and so from the equilibrium form of the Clausius–Clapeyron relation (60) we expect the pressure to increase with
temperature which is in agreement with the results forV = 0 shown in this figure. In Fig. 1 we also observe that the
interface velocity decreases with temperature in a roughly linear fashion at fixed pressure. The effect of changing
the pressure is to shift theV (T ) curves while preserving their slope. This behavior is confirmed by our expression
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Fig. 1. A plot of the dependence of the interface velocity on temperature for three different far-field pressures in the solid. The data used is given
in Table 1 and corresponds to lead. The solid curves are from the numerical solution of the governing equations and the dashed curves show
the smallδ asymptotic result evaluated from (78) forδ = 0.035. From top to bottom, the curves correspond top∞

S − p0 = 17, 0 and−17 bar,
respectively.

Table 1
Properties used in calculations [64,65]

Property Value Units

Liquid thermal conductivity kL 0.159 J/(cm s K)
Solid thermal conductivity kS 0.297 J/(cm s K)
Liquid thermal diffusivity κL 0.108 cm2/s
Solid thermal diffusivity κS 0.202 cm2/s
Melting point TM 600 K
Heat of fusion Lv 256.0 J/cm3

Kinetic coefficient µ 33 cm/(sK)
Kinematic viscosity ν 2.43× 10−3 cm2/s
Liquid density ρL 10.66 g/cm3

Interface thickness `ε 1.0 × 10−8 cm
Density change (ρS/ρL ) − 1 0.035 –

for the non-equilibrium Clausius–Clapeyron equation (66), when we observe that the integrals on the right-hand
side are all positive. The dashed curves in this figure represent the asymptotic approximations to these curves that
are obtained in the limit of small density differences.

We also investigated the effect of increasing the viscosity ratio,µS/µL. We observe from the non-equilibrium
Clausius–Clapeyron relation (66) that the viscous dissipation may increase without bound as the solid viscosity is
increased and result in the relationship between temperature and pressure being significantly altered. However, we
found from our numerical calculations that for the material parameters given in Table 1 for lead with a pressure
differencep − p0 = 0 this is a very weak effect; the melting temperature varied by 4% for an increase inµS/µL

from 1 to 106. For a greater interface thickness of 10−4 cm the change in the melting temperature is 2× 10−3% for
the same increase inµS/µL.
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3.3. Shear flow

We next consider the case of a shear flow parallel to a planar interface that propagates with a constant velocityV .
Far from the interface, in the liquid, we assume that the component of fluid velocity parallel to the interface isU∞.
We take a coordinate system coincident with the moving interface, which is given by the planez = 0. For simplicity
we consider the situation where the system is isothermal, the density of the both the solid and liquid phases are
equal, the surface energy is isotropic, and the dynamic viscosity has the form

µ(φ) = µSφ + (1 − φ)µL . (84)

Under these assumptions the velocity field is given byEu = u(z)Ei and the governing equations (53)–(57) reduce to

0 = d

dz

[
ρV u + µ(φ)

du

dz

]
, (85)

0 = d

dz

[
p + 1

2
ε2

F

(
dφ

dz

)2
]

, (86)

0 = ε2
F

d2φ

dz2
+ MV

dφ

dz
− ρ

∂g

∂φ
, (87)

whereρ is the common value of the bulk densities. The phase-field equation is identical to the leading order equation
for φ0 in the previous section. Its solution is therefore given by Eq. (71) with the requirement that the interface
velocity is related to the temperature in the same manner as given in Eq. (74) (whenV is identified withV0). The
momentum equations may be integrated directly to give

p(z) = p∞ − ρ

64a0(T )
sech4

(
z

`ε

)
, (88)

and

u(z)

U∞
= 1 − A exp

[
−
(

1 + m

2m

)
z

`

]{
cosh

[
z

`ε

+ tanh−1
(

1 − m

1 + m

)]}β

, (89)

where` = µL/(ρV ) is the viscous boundary layer thickness in the liquid,

β = (1 − m)

2m

`ε

`
, (90)

andm = µS/µL. The constant of integration,A, is chosen to satisfy the condition thatu(−Z) = 0, whereZ > 0:

A = exp

[
−
(

1 + m

2m

)
Z

`

]{
cosh

[−Z

`ε

+ tanh−1
(

1 − m

1 + m

)]}−β

. (91)

Taking the sharp interface limit,̀ε/` → 0, it is found thatu(z) ∼ U∞{1 − exp[−(z + Z/m)/`]}, for z > 0 (in
the liquid), andu(z) ∼ U∞{1 − exp[−(z + Z)/(`m)]}, for z < 0 (in the solid). Subsequently, taking the limit in
which the viscosity of the solid is much greater than that of the liquid,m → ∞, it is found to leading order in the
liquid thatu(z) ∼ U∞{1 − exp(−z/`)}, and in the solid thatu(z) ∼ U∞(z + Z)/(`m), i.e., a linear shear.

Thus in the sharp interface limit with the viscosity of the solid much greater than that of the liquid we recover, at
leading order, the exact solution foru(z) in the liquid to the underlying free boundary problem, i.e., the asymptotic
boundary-layer profileu(z) = U∞{1−exp(−z/`)}. In the solid phase we obtain a uniform shear flow, with a strain
rate of magnitudeU∞/(2`m). The velocity at the center of the interface (z = 0) isU∞Z/(`m) and so we find that
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Fig. 2. A plot ofu(z) given by the exact solution (89) of the governing equations for`ε/` = 0.01 and three different values of the viscosity ratio
µS/µL . From top to bottom, the curves correspond toµS/µL equal to 10, 30 and 500.

the no-slip condition at the interface is almost satisfied, the magnitude of the error decreasing in a manner inversely
proportional tom.

Plots ofu(z) for different values ofm with `ε/` = 0.01 are given in Fig. 2. For all values ofm we observe a thin
interfacial layer separating the linear shear in the solid from the shear flow in the liquid. We see that asm increases,
the flow in the solid region is suppressed and adopts a decreasingly small uniform shear while the flow in the liquid
approaches the asymptotic boundary-layer profile, consonant with our asymptotic analysis. The no-slip condition
at the interface,z = 0, is satisfied with greater accuracy asm increases.

The above analysis results in a closed-form solution for the specific choice (84) of the dynamic viscosityµ(φ);
other choices are, of course, possible and Eq. (84) was chosen as a compromise that maintains consistency with the
form (83) used in the previous section while allowing a simple exact solution. In general, the detailed behavior of the
fluid flow in the interfacial region would be expected to depend on the specific form chosen forµ(φ). For example,
interpolating by the reciprocal, as in 1/µ(φ) = φ/µS+(1−φ)/µL, also results in a closed-form solution. Similarly
the viscous dissipation in the interface will also depend on the form ofµ(φ). This in turn will influence the degree
to which the melting temperature is influenced by the ratioµS/µL discussed above for a density-change flow. We
note that in a related situation in which a diffuse-interface model was used to study non-equilibrium effects during
directional solidification of a binary alloy [66], the details of some interfacial quantities, such as a characteristic
trapping velocity, were found to be sensitive to the specific form chosen for interpolating the diffusivity through the
interface; such considerations are likely to apply to the present case as well.

4. Conclusions

In this paper we have developed a phase-field model for the solidification of a pure material that includes
convection. The model has been derived using the formalism of irreversible thermodynamics, employing gradient
energy and entropy terms that incorporate the effects of capillarity within the framework of a diffuse interface model.
Our solidification model has two distinctive aspects: we treat both the solid and liquid phases as Newtonian viscous
fluids (with a high ratio of solid to liquid viscosity,µS/µL), and the phase boundaries are endowed with anisotropic
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surface energy by using the generalizedξ -vector formulation. Both features are consonant with our intention to
model a solid–liquid system. Our formulation neglects elastic effects in the solid. We work with pressure and
temperature as independent thermodynamic variables which permits a quasi-incompressible formulation in which
the densities can be uniform in each phase. This allows us to model volume-change effects on solidification which
we illustrated for the case of constant velocity isothermal unidirectional solidification. In this setting we derived a
non-equilibrium form of the Clausius–Clapeyron relation which describes how the relation between pressure and
temperature is modified by the motion of the interface. The ability of this two-fluid model to approximate the no-slip
condition at the interface was examined by considering a model shear flow parallel to a planar interface. In this
situation we found an exact solution which showed that the correction to the no-slip boundary condition is first
order in the quantityµL/µS for a simple model in which the viscosity depends linearly on the order parameterφ.

We have focused our attention on the derivation of the model and some important test cases involving planar
interfaces. In future work we plan to investigate the sharp interface limit for curved interfaces as well as use the
model as a computational vehicle for the investigation of flow effects in dendritic solidification, including the effects
of buoyancy forces.
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Appendix A

We have

d

dt

∫
Ω(t)

1

2
Γ 2(∇φ)dV =

∫
Ω(t)

[
1

2

∂Γ 2

∂t
+ 1

2
∇ · (Γ 2Eu)

]
dV

=
∫
Ω(t)

[
Γ

∂Γ

∂t
+ Eu · (Γ ∇Γ ) + 1

2
Γ 2∇ · Eu

]
dV

=
∫
Ω(t)

[
Γ Eξ · D(∇φ)

Dt
+ 1

2
Γ 2∇ · Eu

]
dV, (A.1)

where we have used the fundamental relation dΓ ( Ep) = Eξ · d Ep, with Ep = ∇φ. We note that

∇ ·
(

Γ Eξ Dφ

Dt

)
= Dφ

Dt
∇ · (Γ Eξ) + Γ Eξ · D(∇φ)

Dt
+ Γ ∇Eu : Eξ ⊗ ∇φ, (A.2)

where the tensorΛ = Eξ ⊗ ∇φ has componentsΛjk = ξj ∂φ/∂xk, and the double contraction of the tensor product
is denoted by∇Eu : Λ = ∂uk/∂xj Λjk. This gives that

d

dt

∫
Ω(t)

1

2
Γ 2(∇φ) dV =

∫
Ω(t)

[
∇ ·

(
Γ Eξ Dφ

Dt

)
− Dφ

Dt
∇ ·

(
Γ Eξ
)

− Γ ∇Eu : Eξ ⊗ ∇φ + 1

2
Γ 2∇ · Eu

]
dV.

(A.3)
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