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We present a diffuse-interface treatment of the internal gravity waves which have been observed
experimentally by Berget al. in xenon near its thermodynamic critical point. The results are
compared with theoretical predictions by Betgal. that were obtained using separate models above
and below the critical temperatuiie.. The diffuse-interface model applies both above and below
T., and is formulated by using the density as an order parameter. The diffuse interface is
represented as a transition zone of rapid but smooth density variation in the model, and density
gradients appear in a capillary tensor, or Korteweg stress term, in the momentum equation. We
obtain static density profiles, compute internal wave frequencies and compare with the experimental
data and theoretical results of Bergal. both above and below the critical temperature. The results
reveal a singularity in the diffuse-interface model in the limit of incompressible perturbations.
[S1070-663(197)03007-9

I. INTRODUCTION the torque and displacement amplitude of an oscillating wire
mesh paddle that is immersed in the fluid, from which the

The singular behavior of the material properties of ashear viscosity of the fluid can be inferred. In certain fre
liquid—vapor system near the thermodynamic critical point N ' ) §
quid—vapor sy y ic critical poi guency ranges, the forced oscillation of the paddle is found

leads to a number of interesting fluid phenomena. The criti-'~ " . i )
cal point is characterized by definite values of the temperat-0 trigger internal wave modes with frequenmes on the order
ture, T, pressureP,, and densityp., that depend on the of 1 Hz. These modes are an undesirable feature of t.he mea-
specific material under consideration. Several bulk equilib-Sl_Jrement Process n 1 9, but are not expected to interfere
rium properties, such as specific heat and isothermal corﬁ’y'_th mez_;\surements in microgravity. On t_h_e other hand, the
pressibility, exhibit values that diverge at the critical point, critical wscometer SErves as a very sensn!ve f:Jetector of in-
with characteristic exponents that do not depend on the spd€'nal waves in 1 g, allowing their observation in laboratory-
cific material. The accurate determination of these critical-SC@/€ Systems under well-controlled conditions. _

point exponents is a subject of considerable experimental !N Previous work’ a theoretical analysis of the predicted

and theoretical study. Transport properties, such as the shefigquencies of internal waves was based on two separate
and bulk viscosities and thermal conductivity, also show sin/models that were applied either above or below the critical

gular behavior near the critical point. In addition, as the tem{emperature. A restricted cubic moliér the thermodynam-
perature of a liquid—vapor system is raised to just belowCcs of the near-critical fluid was used to compute the equilib-
T., the liquid—vapor interface becomes increasingly diffuse/ium density profile, which was then used in a numerical
a phenomena that is related to the scattering of visible lighgletermination of the internal wave frequencies. In the one-
(“critical opalescence) from micron-scale structures in the Phase regimeT>T), this resulted in a single two-point
fluid. boundary problem for the amplitude and frequency of the
The large increase in compressibility near the criticalwave motion, with boundary conditions applied at the hori-
point leads to significant density stratification in terrestrialzontal walls of the sample. In the two-phase regime
gravity levels, resulting in sample inhomogeneities that com{T<T¢), governing equations were posed separately in the
plicate the accurate experimental determination of criticalliquid and vapor regions. The liquid—vapor interface was as-
point exponents on Earftt For xenon in 1 g, for example, sumed to be sharp, and standard jump conditions on the pres-
the density variation just above the critical point can be asure and flow velocities were applied there.
much as 10% in 1 cm. Experiments in a microgravity envi-  In the present work we recompute the internal wave fre-
ronment allow temperatures much closefTtoto be consid- quencies by using a single model for both the one-phase and
ered without encountering significant density stratification. two-phase regimes that is based on a diffuse-interface treat-
An interesting consequence of the density stratificatiorment of the liqguid—vapor system. The model we employ is
near the critical pointri 1 g is theoccurrence of internal based on a thermodynamic formulation of the problem that
waves in a centimeter-scale syst&m.These waves have includes contributions from a gradient-energy tethat lead
been observed during experiments designed to measure thelocalized but smooth transitions at phase boundaries. The
shear viscosity of xenon near the critical pdifithe experi-  gradient energy term leads to a capillary tensor that appears
mental procedure is based on a simultaneous measurementinfthe momentum equation, making local contributions in the
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transition layer that represents the diffuse liquid—vapor interdl. FORMULATION
face. Given the diffuse nature of the actual liquid—vapor in-

terface near the critical point, such a model is a natural can- The hydrodynam|_c equations governing InVIS_CId, com-
didate for a unified treatment of wave motion in a near_presslble flow of a single-component fluid near its critical

critical fluid. In this model, the width of the diffuse interface point are described by conservation equations for mass, mo-

varies with temperature, being narrow fb<T., becoming mentum, and entropgenergy,
increasingly diffuse at temperatures néar, and leading to Dp

a single-phase system foe>T,. Dt —pV-u, (18
Diffuse-interface models of this general type are com-

mon in mean-field approximations to finer-scaktomic- Du -

level) descriptions of phase transitiofsee, e.g., Chaikin and Por = " VPTPIZHKV.T, (1b)

Lubensky®). Diffuse-interface treatments without convec-

tion have been employed to describe a number of phase tran- D_S -0 (10
sitions, such as in liquid—liquid systerts,solid—liquid Dt

systems2~17 and solid—solid system&:!® Models that in- . _ o
clude the effects of fluid flow have also been studd® WhereD/Dt=d/dt+u-V is the material derivativep is the
and are a current area of research. There are related fluftflid density,u is the three-dimensional fluid velocity with
flow models derived from a more computational point of components§,v,w), s(T,p) andp(T,p) are the entropy per
view that employ a numerically diffuse description of the Unit mass and the pressure, respectivshecified by an ap-
interface and, for example, represent the surface tension ag’ioPriate equation of stgteT is the temperatureg is the
volumetric force in order to use a single domain approach t@ravitational acceleratiorz, is the unit normal in the vertical
compute the flow!®=*?In the level set approadHi the inter- direction,K is the gradient energy coefficient which for sim-
face is represented as a level set of a smooth auxiliary fund?licity we assume to be constant, ahds the capillary ten-
tion which is in some ways analogous to the order paramete¥°r given by

functions that are used in diffuse-intgrface desgriptions. AN T=(pV2p+1|Vp|?)I-VpaVp, )
advantage of the level set method is that the interface re- ) ) ) i )

mains sharp in this formulation, which eliminates the needVherel is the identity matrix ands is the tensor(outey
for added numerical resolution in the direction normal to theProduct. Note that

interface. In contrast to these numerical approaches, the dif-  v.7=,v(V2p). 3)

fuse nature of the interface in the present work arises as a ) ) ]
result of the physical model, rather than the numerical apEauations of this form have been considered by a number of

- 0 1 3
proach. Further, in other instances such as phase-field mo&ythors(zeé.g., Fixmart, Felgleorhofz, an%er and Turslﬁ, de
Dunn and Serrin® Jacgmin®® Seppechet’ and

) o . Sobrino
els of solidification, the physical interpretation of the order L )
parameter used in the gradient energy term can be unclear. Eadlg? anddZaIesllaf?) Ihe thrusthqfhmuch”of_:hls work :as_

the present work the fluid density itself is used as the orde Zﬁtn n:)(\a,\c/:irar?sﬁp:?r:gnj Ir:]avn:clcs: I(;]apo' ?r(l;gs\gai; 'IIZ:T']tI-
parameter, and the diffuse interface is represented as a tratrﬁ- ! ' y ICS. ur » capiiartty,
sition region of rapid but smooth density variation, hough generally present, is a small factor in the momentum

The bresent diffuse-interface aoproach. which a IiesF)alance, since the surface tension vanishes at the critical
P PP ' PPIES oint where the liquid and vapor phases become indistin-

both above and below the critical temperature, shall be comF-) . . . :

red with the experimental and theoretical results of Ber uishable. The diffuse nature of the interface in our case,
pta ?4. d ete perime tr? a t.fot.e ca es.llj.t.s N fteh owever, is still of central importance.
€l al.” In order 1o assess the quantitative capablities ot the g capillary tensofT in the momentum equation is

d|ffuse-|ntgrface model. Fpr convenience, We.shall use asiNhased on the densigy and its gradients. It is also possible to
pler equation of state, which allows an analytical solution forg, . \ate descriptions in which the momentum equation has
the density profile, rather than the more accurate but complig,a same form as above, but the capillary tensor is based on
cated restricted cubic model used by Betgal. The present 4, auxiliary conserved order parametsuch as the compo-
equation of state can be implemented easily in both thgiiion in a binary fluid rather than the densif36%In
diffuse-interface model and the sharp-interface model allowgontrast to these cases, the interface in the present model is
ing for a direct comparison between the two models t0 b&jescribed directly in terms of the density, and the capillary
made. terms are based on density gradients rather than gradients of
In Sec. Il we describe the diffuse-interface model for thethe conserved order parameter. This results in a smaller set
compressible, adiabatic motion of a single-component fluichf equations, since it is then unnecessary to augment the
near its critical point. In Sec. Il we outline the configuration equations by coupling them to a Cahn—Hilliard equation for
used by Berget al* to study internal gravity waves in near- the conserved order parameter; the density is governed by
critical xenon and obtain static density profiles using an apthe usual continuity equation.
proximate van der Waals equation of state. Then, we com-  Kortewed” was the first to use a capillary tens@ to
pute internal gravity wave frequencies associated with thesdescribe capillary effects of a diffuse interface. A review by
profiles and compare with the results of Beagal. Results  Davis and Scrivet? describes a number of alternative ap-
are discussed in Sec. IV and conclusions are given in Sec. \aroaches to deriving the equilibrium stress in inhomoge-
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neous fluids and results similar to equati@n More general
forms than the one used here and derivations based on me-
chanical theories have been give.g., Aifantis and
Serrirf®49).

The key difference between these equations and the
sharp-interface equations describing a two-fluid system is the d
presence of a capillary tensdr which models capillary L
forces associated with the interface. The presence of this T
term allows these equations to apply over the entire domain,
including the interfacial region; no interfacial conditions are
required. Boundary conditions applied at container walls, for
example, are required. These shall be discussed more thor
oughly as needed for the present work. The intersection of
the diffuse interface and a container boundary is, in general,

19mm

g
;
g
’
’
’
g
’
g
’
’
g
@

a moving contact line and is not treated here but has been P
addressed by CaHfi, Brackbill et al,*® Jacqmir®® and - - <
Seppechet’ 7.6mm ,

The nonclassical capillary term appearing in the momen-
tum equation can be understood by relating Efjsto global ~ FIG. 1. This figure shows the model configuration filled with a stratified
quantities and balance laws. We define the nMssnergy fluid. The dimensions are ¥x<a,, 0sy=a, and —L=<zs<L where

; ; a,=7.6 mm,a,=38 mm andL=9.5 mm are the values corresponding to
Eoﬁﬂgee;t?;ys in a material subvolumél(t) of the total the experiment by Bergt al. The paddle, which in the experiments creates

the initial disturbance, is shown for reference and is not present in the
mathematical model.

M= f pdV., (43
Q)

1 1 stored energy in the interface. Note that this flux term is
E:f (_p|g|2+pgz+pe(51p)+_K|vp|2 dv, associated with compression of the flow in the interfacial
a2 2 region. Dunn and Serrifi noted that this term was a neces-
(4b) sary part of the thermodynamic description when the Ko-
rteweg capillary tensor was present and referred to this flux
S= JQ(UPSdV- (40)  as the interstitial working. Wangt al** identified a similar
nonclassical entropy flux terfwithout the advective terjin
The total mass is given simply by the integral over the localn their phase-field model of solidificatidisee their equation
density. The total energy is composed of classical and nong)] and identified it as an entropy flux associated with varia-
classical contributions. The classical terms include kinetigjons in the phase-field at the boundary of the subvolume.
energy, gravitational potential energy and internal energyrhe third balance law5c) states that the change in total
&(s,p) given per unit mass. The nonclassical term is in theentropy in the subvolumé(t) is conservedi.e., zero en-
form of a gradient energy associated with steep variations ifropy production. The above model does not include dissi-

density? This nonclassical term represents an energy excessative effects but these can be incorporated in a straightfor-
associated with the interfacial region. Consistent with a conward way*

stant gradient energy coefficient in Edb) there is no gra-
dient entropy terd?*%in Eq. (40).

. . . . lll. INTERNAL GRAVITY WAVES
The governing equationd) are consistent with the bal-

ance laws, In the experiments of Bergt al,* a mesh paddle inside
a small container of near-critical xenon was driven at a fixed
d_M:0 (58 frequency, stopped and then residual internal wave frequen-
dt cies were measured. This was done for a range of tempera-
dE D tures, both above and below the critical temperature. For a
e f ( — pG- n+Kn-T-u+ K_pvp.ﬁ dA, horizontally oriented celli.e., the paddle rotates about a ver-
dt st Dt b tical axis; see Fig. )1 which is the case we shall consider
(5b) here, they observed two distinct internal gravity wave modes
ds whose frequencies were temperature dependent. The higher
a=0, (50 frequency mode had relatively large amplitude disturbances

near the horizontal mid-plane of the cell, while the lower
where 6()(t) is the boundary of the subvolume ands its frequency mode had relatively little motion near the mid-
outward normal. The first balance la®a) states that mass is plane of the cell.
conserved. The second balance l#48b) states that the They modeled these waves using two separate hydrody-
change in the energy of the subvolume is associated with theamic models. One model applied in the single-phase region
rate of (reversible work done by pressure and capillary (above the critical temperatyrand another applied in the
forces on the boundary as well as a nonclassical flux ofwo-phase regiobelow the critical temperatureThey used
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as their equation of state the restricted cubic mddethich
gave a very accurate description of the static density profiles
as the temperature varied. Their theoretical predictions for
the internal gravity wave frequencies agreed well with thosgvhereR is the universal gas constanmy, is the critical den-
observed experimentally. sity andT, is the critical temperature.

The model configuration consists of a rectangular cell  If we use Eq(7) to write the van der Waals equation of
with dimensions &sx<a,, O<y=<a, and—L=<z=<L where state(9) in terms of a free energy, we find that it has a
gravity is in the —z direction (see Fig. 1 Note that no double-well structure below and a single-well structure
paddle is present in the mathematical model. The physicaboveT.. We shall assume a free energy per unit volume of
dimensions used by Beret al. correspond ta,=7.6 mm, the general form
ay=38 mm andL=9.5 mm. These values will be used ex-
cIl_szer here.. The .resu_IFs o_f Besgg al. |nd|catg that while Pf:PcCl(T)+Pch(T)(
this geometry is a simplification of the actual internal geom-
etry of the cell used in the experiments, it is a reasonable
approximation in terms of identifying the internal wave +By
modes and frequencies.

We shall model the motion of the fluid in this cell with wherec,(T) is a temperature-dependent integration constant
the diffuse-interface approach described in Sec. Il. We firstvhose form is not determined by the van der Waals equation
seek static density profileévertical stratification and no of state(9) andc,(T) is related toc,(T). The determination
flow) using an approximate van der Waals equation of statef c,(T) requires an additional thermal equation of state
and then perturb these density profiles to identify the associe.g., see Calléf). Also, the parameter8, and a? are
ated natural internal wave frequencies. We shall compare thigeated as adjustable. This reduces to the van der Waals form,
present results with the theoretical predictidfer both the  expanded locally near the critical temperature and density,
restricted cubic model and the van der Waals equation ofvhenB,= #p.RT, anda®=4. Equationg8) and(10) lead to

9RT, )( p
+ 2l 1——
P 8pc P 3pc

=pRT, (9)

p—pﬂ

C

a’ T_Tc/P_Pc)2+ 1(P_pc)4 ’ (10)

7Tc\pc 4

Pc

statg and the experimental data of Beeg al. the dimensionless equation for the static density profile
A. Basic-state density profiles dz”;
—2_ F _T7 25~ .73

The steady basic-state solution, denoted by subscript € dz2 gz+atTp+p, 1D
“0,” has zero flow, is isothermal and horizontally uniform _ _ _ _
and satisfies where p=(p—po)lpe, T=(T-T)I/T,, z=z/lL, €?

dp, &py =Kp2/BoL? and g=p.gL/B,. We have takerp=p. at

. —pog+ KPOF- (6)  z=0. An approximate analytical solution to E@.1) can be

obtained in the limite<<1. ForT<O (i.e., two-phase region

This equation determines the static density profile when agndz <0, we use the method of matched asymptotic expan-
equation of statgp=p(T,p) is given. It will be useful t0  sjons to obtain

work with a free energy so we employ the thermodynamic

| . —_ - — —~~ Py
SRS e IS

, 0t J2e
P=p"70 | T (7 (12)
wheref is the Helmholtz free energy per unit mass. Integrat-Where pou corresponds to the root of the equation
ing Eq. (6) then gives 0=gz+a’Tp+p°that hasp>ay—T. ForT>0 (i.e., the
d2pe  (pf) one-phase regignwe can express the solution in terms of the
0 .
e A g7+ regular expansion,
dz p gZ+Co, (8)
- o . . 6<%5%
wherec, is a constant of integration. An equivalent deriva- 775 4 —— 270 . (13
tion of Eq. (8) involves minimizing the total energ§ [Eq. (@’T+3p5)*

(4b)] subject to constant total entrof8/[Equation(4c)] and - ~— e ~3

constant total mas§l [Eq. (48] over the total volume” for ~ Wherepo is the real root of &g z+a“Tpo+ po. The den-

the case of no flow. Note that in order to focus on the criticalSity profiles are antisymmetric aboat=0. Using Eqs(10),

point, we have assumed that the average density is equal {6) ands=—f; we can compute expressions for the basic-

the critical densityp, so that the total mass j& 7" state pressurpy(z) and entropysy(z). Note that the entropy
We shall consider a classical van der Waals equation 0%o(z) depends o, (T). Further details of this are discussed

state (e.g., Stanley and CalleR}) as a reasonable starting in Sec. V; for now we note that specification f(z) is not

point for our analysis. Despite its shortcomings in terms ofnecessary for the development that follows.

predicting the detailed behavior such as critical exponents, Static density profiles are shown in Fig. 2 for tempera-

the van der Waals equation of state provides a simple ddures both above and below the critical temperature. The pa-

scription of the qualitative behavior of a fluid near its critical rameter values used to calculate these profiles are

point. The van der Waals equation of state is given by ep,=10"% a=4.85 andg=1.631x 10" * where eZD,_:?Z/
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0.01 where q,= 7j/a, and q,=wk/a, are the wavenumbers in
the two horizontal directions with integer values fomand

k and o is the frequency. Note that we are interested in
natural wave modes confined to the box and therefore have a
discrete rather than a continuous set of wave vectors. In fact,
the modes we describe below hgvek= 1. The form for the

velocity components has been chosen to allomm=0 on
each wall.
As a simplification, we shall consider incompressible
perturbations. In physical terms, this means that the response
of a fluid parcel to a vertical perturbation is associated with
_0.01 changes in the background density gradient rather with any
“0.10 -0.05 0.00 005 0.10 further compression of the parcel. That is, although the
(p—pec)/Pec basic-state density profile develops as a result of the large

compressibility of the fluid near its critical point, acoustic

FIG. 2. This figure shows the static density profiles representing solutions ofyaves do not interact strongly with internal gravity waves.

Eqg. (11). Each curve corresponds to a different temperature as indicated-rhiS can be put in more quantitative terms if we consider the
The dashed curve corresponds to the density profile at the critical temper,

ture. Above the critical temperature, there is a single stratified phase. Belo%runt_vasaa frequency’

T=T+100mK

z/meters

the critical temperature, the fluid separates into two stratified phases. The 2
parameter values used to calculate these profileggre 104, a=4.85, N2 _ 9 0"_P _ g_ (15)
9=1.631x10 4. BV poaz ¥

wherec is the acoustic sound speed. This quantity measures
- ) - i the fluid's oscillatory response to stratification and
g. The parametera” andg were chosen to fit as closely as compressiofi2 Berg et al. argued that for the near-critical
possible the density profiles shown in Bezgal. far above  yenon system under consideration, the Bruntisiia fre-
the critical temperaturésee their Fig. 1 The dashed curve q,ency could be approximated by the stratification term
corresponds to the density profile at the critical temperatures|one. This was based on a direct comparison for xenon of
Above the critical temperature, there is a single stratifiedne first and second terms in E@.5). Since we expect that
phase. Below the critical temperature, the fluid separates intgyr gensity profiles approximate theirs in the bulk regions
two stratified phases. Again, we point out that while theseyny that in the interfacial layer the density gradients used
profiles do not embody the quantitative behavior in terms Of\ere may be quite large, we anticipate that this is a reason-
critical egponents, they'c'jo capt.ure the qualitative behavior of e approximation to pursue. This can be stated more for-
the density near the critical point. mally in terms of incompressible perturbations if we con-

It is interesting to note that there is a significant amountgjyer the equation of stafe=p(s,p). It follows that
of stratification which occurs over a relatively small length

scale. While this stratification often plagues those seekingto Dp dp
make precise measurements of physical quantities of near- Dt~ gs
critical fluids such as xenon, it can also be seen as a unique

feature through which phenomena that normally occur orwherec?= gp/dp is the(adiabati¢ sound speed and we have
much larger length scales, such as those common in oceagnsedDs/Dt=0. Since the basic state has no flow and varies
ography or atmospheric sciences, can be studied in the labenly in the vertical direction we can reduce this to a state-

Ds odp
th ap

%:CZ%
Dt Dt

S

(16)

ratory. ment about the perturbed quantitigenoted by primes
dp"  dpo\ 1(ap’ ,dpo
B. Internal wave frequencies (7+W dz) 2 W_HN dz )/ (17

We follow the analysis of Bergt al* and seek neutrally |n terms of dimensionless quantities, the condition
stable wave modes by introducing perturbations to the basiq-g/c2<1 reveals at leading order the condition of incom-

state solution as follows: pressible perturbationgp’/dt+w’'dpy/dz=0, or V.-u'=0
= po(2) + p(2)cog g,x)co elt, (149  using(13.
P pO(A pl <o) s{q-yy) We insert the expansiord4) into the governing equa-
u=0+ u(z)sin(qxx)cos(qyy)e'“", (14b  tions (1), use the condition of incompressible perturbations,
~ , linearize and find that
v=0+v(z)cog gx)sin(qg,y)e'", (140
~ . LA ~ de
w=0-+w(z)cog g,x)cog g,y)e' ", (140 lwp+w-3—=0, (1839
P=po(2) + p(z)cog ayx)cog dyy)e'!, (148 di
s=sy(2) +5(2)cog g,x)cog ayy)e'", (14f) Gt ayo+ 57 =0, (180
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. ,- d% 3.0
TwpoU—0xP=Kpolx| 4°p~ 5,2/ (189
’p
- ~ ~ _ 2"
lwpov —AyP=Kpoly| A°p~ 12/ (180 2.0
N
~ ~ ~ T
opgit P ngi Kool — 2304+ 9P| ;0o =
Po dz P9 Po q dz d; P d? ' o]
(180 1.0
whereg?=qZ+q; . Note that by virtue of the incompressible
perturbation assumption, the equation for entrapyde-
couples and is not needed to compute the frequency. These 0.0
equations can be combined to obtain the single perturbation -40.0 0.0 40.0 80.0 120.0
equation, T-T¢ (mK)
q? ) d?w [N2 q? 1 d(poM?) dw FIG. 3. This figure shows the internal wave frequendies w/27 (in Hz)
1- w2 M d_TT - E 02 pn dz E obtained experimentally by Berg al. (data pointy the theoretical predic-
Po tions by Berget al. (dashed curvesusing two separate models above and
N2 qz below the critical temperature coupled with a restricted cubic model for the
_q2 - — —-M? \;VZO (19 equation of state and the theoretical predictions of the present diffuse-
0’ o’ ' interface approacksolid curve$ using a van der Waals equation of state.

The vertical dashed line indicates the critical temperature. The parameter
where values used for the diffuse-interface calculations gsg=10"*%, a=4.85

andg=1.631x107%.

, 9 dpg
N-= o 42 (209
K (dpg)2 theoretical predictions of the present diffuse-interface ap-
M2=— _0) (20b) proach using the van der Waals modsblid curve$. The
po\ dz parameter values used for the diffuse-interface calculations

The boundary conditions are that the vertical component ofire ep, =104, a=4.85 andg=1.631x 10 *. The value of
the velocity vanishes on the upper and lower boundariegy, used here was chosen to be well within the convergence

w(L)=w(—L)=0. This is an eigenvalue problem where the region(with respect to the internal wave frequengissown

eigenvalue is the frequeney and the eigenfunctiow char- in Fig. 4.
acterizes the wave mode. Figure 4 shows the dependence of the frequency on the

It is of particular interest to note that this is a second-Parametegp, . The solid curves correspond to the upper and
order system. The model used by Beigal. for the single- lower modes aff=T.—2.8972 mK and the dashed curves
phase region, which is also second-order, can be obtained §prrespond to the upper and lower modes B& T,
takingK =0 (i.e., M2=0) in Eq.(19). That is, the inclusion +75.3272 mK. For these temperatures, the results are con-
of the nonclassical terms in the incompressible limit does noverged for values okp_ smaller than 10* or 10 2. The
result in a higher-order differential equation relative to that
obtained for the classical model. However, we note lienel
show latey that if we include the effects of compressible
perturbations the result is a set of two coupled second-order
equations. We present those equations and discuss them in T
more detail in Sec. V.

We have solved the eigenvalue probldf®) using a —_
method given by Kellé? whereby we replace one of the T
homogeneous boundary conditions with an independent in-
homogeneous one. The integration of the resulting inhomo- < 1.0
geneous boundary value problem was done using v/ B
SUPORT®* This code uses a superposition of linearly inde- |- - - ___ _ =" ___ -~ -7
pendent solutions coupled with an orthonormalization proce- |- - —-— - - - - = - - — — — - -
dure to maintain theiinumerical independence. The inte- 0.5
grations were performed using either an Adams-type method 1073 1072 1071 10°
or a Runge—Kutta method. The eigenvalu@nd eigenfunc- €pL

tion w(z) which satisfy the original homogeneous boundary
condition were then obtained iteratively. " ! We h B85 andS =1 63¢10 4. Th
. . . . n the parameteey, . We have use@&=4.85 andg=1. . The
Figure 3 shows the internal wave frequenmes Obtalne(zolid curves correspond to the upper and lower modeq fefl .—2.8972

experimente_‘||Y(50|id pointg and theoretically using the re- ik and the dashed curves correspond to the upper and lower modes for
stricted cubic mode{dashed curvesby Berget al. and the  T=T +75.3272 mK.

2.0

FIG. 4. This figure shows the dependence of the internal wave frequencies
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Figure 5 shows a comparison of the frequency computed
using the single diffuse-interface model and that computed
using the two separate models of Bexgal., wherein each
casethe equation of stat€l0) is used. Again the solid curves
show the diffuse-interface resultwith the same parameter
values as shown in Fig.)&and the dashed curves show the
classical results. This comparison shows that with the excep-
tion of the regions below the critical temperature where the
disturbance equation breaks dovsee belowy, the diffuse-
interface results reproduce the classical results. This indi-
cates that it is the use of the simpler equation of stafein
the present model, rather than an inherent difference between
the diffuse and sharp-interface models, which accounts for
the differences between the theoretical predictions shown in
Fig. 3.

FIG. 5. This figure shows a direct comparison of the frequency calculated The disturbance equatiat9) is a second-order equation

. . . 2 2 2
using the classical model and that calculated with the diffuse-interfacdVhose leading coefficient-1q“M</ <, as noted, may van-
model. In each case we have ug@d) as the equation of state. The vertical ish. Although this coefficient depends on the vertical coordi-

dashed line indicates the critical temperature. We find that in this case thﬁate, we can estimate the point at which it first vanishes by
diffuse-interface modelsolid curve$ recovers the classical mod@lashed . L~ . .

curves given by Berget al. The dashed—dotted line in this figure indicates €valuating it atz=0, where the density gradient, and hence
the location where the coefficient-1g?M?/ »? of the second-order term in M, is largest. In terms of the frequen€y= w/27 (in Hz)

Eq. (19) is predicted to vanish, and hence indicates the boundary beyong,n( temperatur@ this boundary is given by
which we cannot compute with the present model in the incompressible

;40.0 0.0 40.0 80.0 120.0
T-Te (mK)

perturbation limit. Since this coefficient depends on the vertical coordinate, QO (q L)a2 ‘T— T ’
we have identified this boundary by evaluating the coefficienzatO, — ¢ . (21)
where the density gradient, and herMe is greatest. /g/L 20 /2§| T, ‘

Note that this result does not depend on the thickness of the
most significant departure from the converged value occuriiterface. We have plotted this boundary in Figidashed—
for the lower mode and <T, and indicates that the results dotted ling for the parameter values as given above. This
can become very sensitive to values gf, greater than boundary is consistent with the points at which we can no
102, longer compute numerical solutions to the present model

There are a number of comparisons that can be madé€., where the solid curves terminate in Figs. 3 and 5

between the theoretical results predicted with the single
diffuse-interface model and those obtained by Betrgl. us-
ing two separate models. While by design the diffuse-
interface model agrees with the Beegal. theory for tem- In this section we discuss several of the issues raised by
peratures well above the critical temperatarecall that the  the above described analysis and numerical results. In par-
parameters in the present equation of state were chosen §eular we shall address possible improvements in terms of
that the density profile matches that of the Betgl. theory  the equation of state used in the diffuse-interface model and
well above the critical temperatyrethe difference becomes  a|so the issue of the limitations of the incompressible pertur-
more pronounced as the temperature is decreased. As Vition assumption.
shall see below and in the next figure, this difference can be The advantage of the equation of state employed in the
attributed in full to the difference between the two equationspresent analysis is that from both a physical and mathemati-
of state used in the two models. That is, the diffuse-interfacgal viewpoint it is the simplest characterization of the near-
results differ from those of Bergt al. because the variation critical behavior. An equation of state similar to this is typi-
with temperature of the density profiles obtained with thecally chosen for numerical simulations of the full set of
van der Waals equation of state used here does not precisedyjuations. The disadvantage, as we have seen, is that it does
match that of the density profiles obtained using the renot provide as accurate of a representation of the density
stricted cubic model. This may have important consequencgsrofiles as does the restricted cubic model, for example. One
in other studies using diffuse-interface models and an equamprovement that can be made is to use a modified van der
tion of state similar to the van der Waals model used hergyaals equation of state.g., Rowlinson and Widortt, and
(for example, full numerical simulations of the governing Fisk and Widom®. The modified van der Waals equation of
equations The present study gives an indication of how thestate improves on the predictions in terms of critical expo-
equation of state affects the results. Another result of thgents relative to the van der Waals equation of state but still
diffuse-interface model is the premature termination of theallows an analytical solution for the density profiles.
frequency curves below the critical temperature. As we shall  The numerical solution and analysis of the disturbance
see below, this is the result of a breakdown of the disturequation(19) showed that its leading coefficient can vanish.
bance equatioil9) as the coefficient of the term®w/dz>  This indicates the presence of a singularity. A key assump-
vanishes. tion used to derive this equation was that the perturbations

IV. DISCUSSION
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were incompressible. Although we have used a simple equassed the “linear model” as given by Hohenberg and
tion of state and have used approximate techniques to writBarmatZ to compute the sound speed. Note that this model
down the basic-state density profile, it seems quite clear thas used to compute the sound speed only; we still use the van
a more accurate representation of the density profile shaller Waals equation of state to compute the density profiles.
ultimately suffer the same consequences. In order to furthe®ur calculations show that the inclusion of compressibility
understand this singularity, we shall rederive the disturbanceffects in the one-phase region lead to negligible corrections
equations without making the assumption of incompressibilin terms of the resulting internal wave frequencies. This is to
ity. Using the same approach as described in Sec. Il B, wée expected based on the fact that our incompressible calcu-
find that the disturbance equations that retain the effects dations encountered no difficulty in the one-phase region.

compressibility are given by That is, the inclusion of compressibility in the one-phase
~ ~ . ~ region represents a regular perturbation. This reinforces the
d d’p dqg d?q statements given by Beret al* who argued that the com-

- p . B
AP+ Az, TAs gz TAATAs T As 2 =0, pressibility effects should be negligible with respect to the

(229 internal gravity wave frequency predictions. The above de-

R . " scribed ‘linear model’ applies in the classical sense below

- dp ~ dq d<q the critical point, in that it can be used to calculate the sound
Blp+B2E+ B4q+B5E+ BGd_z2:0’ (22h speed on either side of a sharp interface. However, there is

R R no rigorous way of connecting the two profiles through the
whereq=pow and the(variablg coefficientsA; andB; are  diffuse-interface used in the present calculations. Therefore,
given in Appendix A. in the two-phase region we have used a constant value for

These are two coupled second-order equations descrilthe sound speed in order to solve the eigenvalue problem.
ing a “diffuse/compressible” flow. It is of interest to recover Although thisad hocprescription for the sound speed does
several lower-order cases from this system; that is, theot provide an accurate approximation to the true sound
“diffuse/incompressible,” *“classical/compressible” and speed, which can vary significantly in the vertical direction,
“classical/incompressible” cases. it is sufficient for our purposes in that it is nonzero every-

The “diffuse/incompressible” case can be obtained for-where and can be made to represent the true sound speed in
mally by setting 1¢?(z) =0 in the expressions in Appendix an average sense. We have found that this approach does in
A. In this case, the coefficiens,, Az andB, all vanish. It  fact allow us to calculate internal wave frequencies beyond
can then be easily seen that E¢®2) reduce to a second- the line of singularity shown in Fig. 5. Therefore, we can
order equation fof:l, or equivalently, forw [see Eq.(19)]. conclude that the effects of compressibility relieve this sin-
Therefore, in the context of the diffuse-interface formulation,gularity and may not be negligible when using the diffuse-
the incompressible limit is singular. interface formulation as we have presented here.

This is in contrast to the classical case, as can be seen if As an additional check, we have calculated the solutions
we compare the “classical/compressible” and *“classical/for the case where the capillarity terms are included in the
incompressible” cases. First, to obtain the classisaigle- basic-state density profile while the terms inVO|ViN§ and
phas¢ description from Eqs(22) we takeK=0. Here, the its derivatives are ignored in aad hocway in Eq. (19).
coefficientsA,, A; andAg vanish. It is again easy to see that From the point of view of the perturbation equation, the sys-
the resulting coupled equations forandq can be reduced to tem_behaves as if it were in a single phase, with the density
a second-order equation fqr This represents the “classical/ profile represented as before in .bOth the qne-phase an(_j two-
compressible” case. In the “classical/incompressible” case phase regions. The results of this calculation are graphically

which again we can obtain by further setting(2) =0, we identical to the dashed curves shown in Fig. 5, which repre-
find that the coefficienB, vanishes. Therefore, in th,e clas- Sent the sharp-interface model results. Unlike the full incom-

sical case, the disturbance equations are second-order regapégss'ble case where the capillary terM$ are included in

less of whether or not the effects of compressibility are in—the perturbation equatiar19), these calculations are not lim-

cluded. The above description shows that the limit of
incompressible perturbations is a regular limit in the classical
formulation but is a singular limit in the diffuse-interface
formulation. V. CONCLUSIONS
In order to solve Eq922), the sound speed must first be
specified. This, however, cannot be calculated from the clas- We have used a diffuse-interface model to describe in-
sical van der Waals equation of state alone. A thermal equdernal gravity waves in near-critical xenon. This analysis ex-
tion of state, consistent with the van der Waals equationtends that of Bergt al.* who studied the problem experi-
must be given! mentally and theoretically using separate hydrodynamic
For the present purposes, we would like only to confirmdescriptions above and below the critical temperature. The
that the inclusion of the terms due to compressibility relievepresent diffuse-interface description of the hydrodynamics
the singularity observed in the incompressible calculationgan be used to calculate the internal wave frequencies both
and allow us to calculate frequencies at lower temperaturegbove and below the critical temperature. We have studied
Therefore, we shall not be concerned with the specific formhe sensitivity of the model to the value of the gradient en-
used for the sound speed. In the single-phase region, we haeegy coefficient. For sufficiently small values of the gradient

ited by the line of singularity.
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energy coefficient, the single diffuse-interface model recov- 1 [Nk(2))" Ng(z) 1
ers the classical results when the same equation of state is Ba=— W - +—

2
. Po W Ppo  Po
used in each case.

An unexpected result identified here is that the incom- K Ng(z) d3pg _
pressible flow limit is singular in the context of the diffuse- + gw? p, dZ8° (ALi)
interface limit. That is, when the effects of compressibility
are neglected, the internal wave problem is governed by a Bo=— Nk(2) 1 dpo (ALj)

) . +———,
second-order perturbation equation, but when the effects of 99°po qu(z) dz

compressibility are included, the problem is governed by a

system of two second-order perturbation equations. This is in Bg=— 21 (A1K)
contrast to the classical case where the limit of incompress- d°po’
ibility is regular. where
d 2 Kg d?
g dpo g g 07po (A2)

Nk(Z)=—— =+ .
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