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A diffuse-interface description of internal waves in a near-critical fluid
D. M. Anderson and G. B. McFadden
Mathematical and Computational Sciences Division, National Institute of Standards and Technology,
Gaithersburg, Maryland 20899

~Received 30 August 1996; accepted 24 March 1997!

We present a diffuse-interface treatment of the internal gravity waves which have been observed
experimentally by Berget al. in xenon near its thermodynamic critical point. The results are
compared with theoretical predictions by Berget al. that were obtained using separate models above
and below the critical temperatureTc . The diffuse-interface model applies both above and below
Tc , and is formulated by using the density as an order parameter. The diffuse interface is
represented as a transition zone of rapid but smooth density variation in the model, and density
gradients appear in a capillary tensor, or Korteweg stress term, in the momentum equation. We
obtain static density profiles, compute internal wave frequencies and compare with the experimental
data and theoretical results of Berget al.both above and below the critical temperature. The results
reveal a singularity in the diffuse-interface model in the limit of incompressible perturbations.
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I. INTRODUCTION

The singular behavior of the material properties of
liquid–vapor system near the thermodynamic critical poi1

leads to a number of interesting fluid phenomena. The c
cal point is characterized by definite values of the tempe
ture, Tc pressure,Pc , and density,rc , that depend on the
specific material under consideration. Several bulk equi
rium properties, such as specific heat and isothermal c
pressibility, exhibit values that diverge at the critical poi
with characteristic exponents that do not depend on the
cific material. The accurate determination of these critic
point exponents is a subject of considerable experime
and theoretical study. Transport properties, such as the s
and bulk viscosities and thermal conductivity, also show s
gular behavior near the critical point. In addition, as the te
perature of a liquid–vapor system is raised to just bel
Tc , the liquid–vapor interface becomes increasingly diffu
a phenomena that is related to the scattering of visible l
~‘‘critical opalescence’’! from micron-scale structures in th
fluid.

The large increase in compressibility near the criti
point leads to significant density stratification in terrestr
gravity levels, resulting in sample inhomogeneities that co
plicate the accurate experimental determination of critic
point exponents on Earth.2,3 For xenon in 1 g, for example,4

the density variation just above the critical point can be
much as 10% in 1 cm. Experiments in a microgravity en
ronment allow temperatures much closer toTc to be consid-
ered without encountering significant density stratification

An interesting consequence of the density stratificat
near the critical point in 1 g is theoccurrence of interna
waves in a centimeter-scale system.5–7 These waves have
been observed during experiments designed to measur
shear viscosity of xenon near the critical point.4 The experi-
mental procedure is based on a simultaneous measureme
1870 Phys. Fluids 9 (7), July 1997
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the torque and displacement amplitude of an oscillating w
mesh paddle that is immersed in the fluid, from which t
shear viscosity of the fluid can be inferred. In certain fr
quency ranges, the forced oscillation of the paddle is fou
to trigger internal wave modes with frequencies on the or
of 1 Hz. These modes are an undesirable feature of the m
surement process in 1 g, but are not expected to inter
with measurements in microgravity. On the other hand,
critical viscometer serves as a very sensitive detector of
ternal waves in 1 g, allowing their observation in laborato
scale systems under well-controlled conditions.

In previous work,4 a theoretical analysis of the predicte
frequencies of internal waves was based on two sepa
models that were applied either above or below the criti
temperature. A restricted cubic model8 for the thermodynam-
ics of the near-critical fluid was used to compute the equi
rium density profile, which was then used in a numeric
determination of the internal wave frequencies. In the o
phase regime (T.Tc), this resulted in a single two-poin
boundary problem for the amplitude and frequency of
wave motion, with boundary conditions applied at the ho
zontal walls of the sample. In the two-phase regim
(T,Tc), governing equations were posed separately in
liquid and vapor regions. The liquid–vapor interface was
sumed to be sharp, and standard jump conditions on the p
sure and flow velocities were applied there.

In the present work we recompute the internal wave f
quencies by using a single model for both the one-phase
two-phase regimes that is based on a diffuse-interface tr
ment of the liquid–vapor system. The model we employ
based on a thermodynamic formulation of the problem t
includes contributions from a gradient-energy term9 that lead
to localized but smooth transitions at phase boundaries.
gradient energy term leads to a capillary tensor that app
in the momentum equation, making local contributions in t
¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp
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transition layer that represents the diffuse liquid–vapor in
face. Given the diffuse nature of the actual liquid–vapor
terface near the critical point, such a model is a natural c
didate for a unified treatment of wave motion in a ne
critical fluid. In this model, the width of the diffuse interfac
varies with temperature, being narrow forT!Tc , becoming
increasingly diffuse at temperatures nearTc , and leading to
a single-phase system forT@Tc .

Diffuse-interface models of this general type are co
mon in mean-field approximations to finer-scale~atomic-
level! descriptions of phase transitions~see, e.g., Chaikin and
Lubensky10!. Diffuse-interface treatments without conve
tion have been employed to describe a number of phase
sitions, such as in liquid–liquid systems,11 solid–liquid
systems,12–17 and solid–solid systems.18,19 Models that in-
clude the effects of fluid flow have also been studied,20–39

and are a current area of research. There are related
flow models derived from a more computational point
view that employ a numerically diffuse description of th
interface and, for example, represent the surface tension
volumetric force in order to use a single domain approach
compute the flow.40–42 In the level set approach,43 the inter-
face is represented as a level set of a smooth auxiliary fu
tion which is in some ways analogous to the order param
functions that are used in diffuse-interface descriptions.
advantage of the level set method is that the interface
mains sharp in this formulation, which eliminates the ne
for added numerical resolution in the direction normal to
interface. In contrast to these numerical approaches, the
fuse nature of the interface in the present work arises a
result of the physical model, rather than the numerical
proach. Further, in other instances such as phase-field m
els of solidification, the physical interpretation of the ord
parameter used in the gradient energy term can be unclea
the present work the fluid density itself is used as the or
parameter, and the diffuse interface is represented as a
sition region of rapid but smooth density variation.

The present diffuse-interface approach, which app
both above and below the critical temperature, shall be c
pared with the experimental and theoretical results of B
et al.4 in order to assess the quantitative capabilities of
diffuse-interface model. For convenience, we shall use a s
pler equation of state, which allows an analytical solution
the density profile, rather than the more accurate but com
cated restricted cubic model used by Berget al.The present
equation of state can be implemented easily in both
diffuse-interface model and the sharp-interface model allo
ing for a direct comparison between the two models to
made.

In Sec. II we describe the diffuse-interface model for t
compressible, adiabatic motion of a single-component fl
near its critical point. In Sec. III we outline the configuratio
used by Berget al.4 to study internal gravity waves in nea
critical xenon and obtain static density profiles using an
proximate van der Waals equation of state. Then, we c
pute internal gravity wave frequencies associated with th
profiles and compare with the results of Berget al. Results
are discussed in Sec. IV and conclusions are given in Sec
Phys. Fluids, Vol. 9, No. 7, July 1997
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V.

II. FORMULATION

The hydrodynamic equations governing inviscid, co
pressible flow of a single-component fluid near its critic
point are described by conservation equations for mass,
mentum, and entropy~energy!,

Dr

Dt
52r¹•uW , ~1a!

r
DuW

Dt
52¹p2rgẑ1K¹•T, ~1b!

Ds

Dt
50, ~1c!

whereD/Dt5]/]t1uW •¹ is the material derivative,r is the
fluid density,uW is the three-dimensional fluid velocity with
components (u,v,w), s(T,r) andp(T,r) are the entropy per
unit mass and the pressure, respectively~specified by an ap-
propriate equation of state!, T is the temperature,g is the
gravitational acceleration,ẑ is the unit normal in the vertica
direction,K is the gradient energy coefficient which for sim
plicity we assume to be constant, andT is the capillary ten-
sor given by

T5~r¹2r1 1
2 u¹ru2!I2¹r ^ ¹r, ~2!

where I is the identity matrix and̂ is the tensor~outer!
product. Note that

¹•T5r¹~¹2r!. ~3!

Equations of this form have been considered by a numbe
authors~e.g., Fixman,20 Felderhof,21 Langer and Turski,23 de
Sobrino,25 Dunn and Serrin,30 Jacqmin,36 Seppecher,37 and
Nadiga and Zaleski.38! The thrust of much of this work ha
been towards applications in which capillarity was a dom
nant mechanism in the dynamics. In our case, capillar
though generally present, is a small factor in the moment
balance, since the surface tension vanishes at the cri
point where the liquid and vapor phases become indis
guishable. The diffuse nature of the interface in our ca
however, is still of central importance.

The capillary tensorT in the momentum equation i
based on the densityr and its gradients. It is also possible
formulate descriptions in which the momentum equation
the same form as above, but the capillary tensor is base
an auxiliary conserved order parameter~such as the compo
sition in a binary fluid! rather than the density.31–36,39 In
contrast to these cases, the interface in the present mod
described directly in terms of the density, and the capilla
terms are based on density gradients rather than gradien
the conserved order parameter. This results in a smalle
of equations, since it is then unnecessary to augment
equations by coupling them to a Cahn–Hilliard equation
the conserved order parameter; the density is governed
the usual continuity equation.

Korteweg44 was the first to use a capillary tensor~2! to
describe capillary effects of a diffuse interface. A review
Davis and Scriven45 describes a number of alternative a
proaches to deriving the equilibrium stress in inhomog
1871D. M. Anderson and G. B. McFadden
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neous fluids and results similar to equation~2!. More general
forms than the one used here and derivations based on
chanical theories have been given~e.g., Aifantis and
Serrin46,47!.

The key difference between these equations and
sharp-interface equations describing a two-fluid system is
presence of a capillary tensorT which models capillary
forces associated with the interface. The presence of
term allows these equations to apply over the entire dom
including the interfacial region; no interfacial conditions a
required. Boundary conditions applied at container walls,
example, are required. These shall be discussed more
oughly as needed for the present work. The intersection
the diffuse interface and a container boundary is, in gene
a moving contact line and is not treated here but has b
addressed by Cahn,48 Brackbill et al.,40 Jacqmin,36 and
Seppecher.37

The nonclassical capillary term appearing in the mom
tum equation can be understood by relating Eqs.~1! to global
quantities and balance laws. We define the massM , energy
E and entropyS in a material subvolumeV(t) of the total
volumeV by

M5E
V~ t !

rdV, ~4a!

E5E
V~ t !

S 12 ruuW u21rgz1re~s,r!1
1

2
Ku¹ru2DdV,

~4b!

S5E
V~ t !

rsdV. ~4c!

The total mass is given simply by the integral over the lo
density. The total energy is composed of classical and n
classical contributions. The classical terms include kine
energy, gravitational potential energy and internal ene
e(s,r) given per unit mass. The nonclassical term is in
form of a gradient energy associated with steep variation
density.9 This nonclassical term represents an energy exc
associated with the interfacial region. Consistent with a c
stant gradient energy coefficient in Eq.~4b! there is no gra-
dient entropy term49,50 in Eq. ~4c!.

The governing equations~1! are consistent with the bal
ance laws,

dM

dt
50, ~5a!

dE

dt
5E

dV~ t !
S 2puW •n̂1Kn̂•T•uW 1K

Dr

Dt
¹r•n̂DdA,

~5b!

dS

dt
50, ~5c!

wheredV(t) is the boundary of the subvolume andn̂ is its
outward normal. The first balance law~5a! states that mass i
conserved. The second balance law~5b! states that the
change in the energy of the subvolume is associated with
rate of ~reversible! work done by pressure and capilla
forces on the boundary as well as a nonclassical flux
1872 Phys. Fluids, Vol. 9, No. 7, July 1997
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stored energy in the interface. Note that this flux term
associated with compression of the flow in the interfac
region. Dunn and Serrin30 noted that this term was a nece
sary part of the thermodynamic description when the K
rteweg capillary tensor was present and referred to this
as the interstitial working. Wanget al.14 identified a similar
nonclassical entropy flux term~without the advective term!
in their phase-field model of solidification@see their equation
~6!# and identified it as an entropy flux associated with var
tions in the phase-field at the boundary of the subvolum
The third balance law~5c! states that the change in tot
entropy in the subvolumeV(t) is conserved~i.e., zero en-
tropy production!. The above model does not include diss
pative effects but these can be incorporated in a straight
ward way.50

III. INTERNAL GRAVITY WAVES

In the experiments of Berget al.,4 a mesh paddle inside
a small container of near-critical xenon was driven at a fix
frequency, stopped and then residual internal wave frequ
cies were measured. This was done for a range of temp
tures, both above and below the critical temperature. Fo
horizontally oriented cell~i.e., the paddle rotates about a ve
tical axis; see Fig. 1!, which is the case we shall conside
here, they observed two distinct internal gravity wave mod
whose frequencies were temperature dependent. The hi
frequency mode had relatively large amplitude disturban
near the horizontal mid-plane of the cell, while the low
frequency mode had relatively little motion near the m
plane of the cell.

They modeled these waves using two separate hydro
namic models. One model applied in the single-phase reg
~above the critical temperature! and another applied in the
two-phase region~below the critical temperature!. They used

FIG. 1. This figure shows the model configuration filled with a stratifi
fluid. The dimensions are 0<x<ax , 0<y<ay and 2L<z<L where
ax57.6 mm,ay538 mm andL59.5 mm are the values corresponding
the experiment by Berget al.The paddle, which in the experiments creat
the initial disturbance, is shown for reference and is not present in
mathematical model.
D. M. Anderson and G. B. McFadden
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as their equation of state the restricted cubic model,3,8 which
gave a very accurate description of the static density pro
as the temperature varied. Their theoretical predictions
the internal gravity wave frequencies agreed well with tho
observed experimentally.

The model configuration consists of a rectangular c
with dimensions 0<x<ax , 0<y<ay and2L<z<L where
gravity is in the2z direction ~see Fig. 1!. Note that no
paddle is present in the mathematical model. The phys
dimensions used by Berget al. correspond toax57.6 mm,
ay538 mm andL59.5 mm. These values will be used e
clusively here. The results of Berget al. indicate that while
this geometry is a simplification of the actual internal geo
etry of the cell used in the experiments, it is a reasona
approximation in terms of identifying the internal wav
modes and frequencies.

We shall model the motion of the fluid in this cell wit
the diffuse-interface approach described in Sec. II. We fi
seek static density profiles~vertical stratification and no
flow! using an approximate van der Waals equation of s
and then perturb these density profiles to identify the ass
ated natural internal wave frequencies. We shall compare
present results with the theoretical predictions~for both the
restricted cubic model and the van der Waals equation
state! and the experimental data of Berget al.

A. Basic-state density profiles

The steady basic-state solution, denoted by subsc
‘‘0,’’ has zero flow, is isothermal and horizontally uniform
and satisfies

dp0
dz

52r0g1Kr0
d3r0
dz3

. ~6!

This equation determines the static density profile when
equation of statep5p(T,r) is given. It will be useful to
work with a free energy so we employ the thermodynam
relation

p5r2
] f

]r u T , ~7!

wheref is the Helmholtz free energy per unit mass. Integr
ing Eq. ~6! then gives

K
d2r0
dz2

5
]~r f !

]r
1gz1c0 , ~8!

wherec0 is a constant of integration. An equivalent deriv
tion of Eq. ~8! involves minimizing the total energyE @Eq.
~4b!# subject to constant total entropyS @Equation~4c!# and
constant total massM @Eq. ~4a!# over the total volumeV for
the case of no flow. Note that in order to focus on the criti
point, we have assumed that the average density is equ
the critical densityrc so that the total mass isrcV .

We shall consider a classical van der Waals equation
state ~e.g., Stanley1 and Callen51! as a reasonable startin
point for our analysis. Despite its shortcomings in terms
predicting the detailed behavior such as critical expone
the van der Waals equation of state provides a simple
scription of the qualitative behavior of a fluid near its critic
point. The van der Waals equation of state is given by
Phys. Fluids, Vol. 9, No. 7, July 1997
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S p1
9RTc
8rc

r2D S 12
r

3rc
D5rRT, ~9!

whereR is the universal gas constant,rc is the critical den-
sity andTc is the critical temperature.

If we use Eq.~7! to write the van der Waals equation o
state ~9! in terms of a free energy, we find that it has
double-well structure belowTc and a single-well structure
aboveTc . We shall assume a free energy per unit volume
the general form

r f5rcc1~T!1rcc2~T!S r2rc
rc

D
1B0Fa22 T2Tc

Tc
S r2rc

rc
D 21 1

4S r2rc
rc

D 4G , ~10!

wherec1(T) is a temperature-dependent integration const
whose form is not determined by the van der Waals equa
of state~9! andc2(T) is related toc1(T). The determination
of c1(T) requires an additional thermal equation of sta
~e.g., see Callen51!. Also, the parametersB0 and a2 are
treated as adjustable. This reduces to the van der Waals f
expanded locally near the critical temperature and dens
whenB05

9
16rcRTc anda

254. Equations~8! and~10! lead to
the dimensionless equation for the static density profile

ẽ 2
d2 r̃

d z̃2
5 g̃ z̃1a2T̃ r̃ 1 r̃ 3, ~11!

where r̃ 5(r2rc)/rc , T̃5(T2Tc)/Tc , z̃5z/L , ẽ 2

5Krc
2/B0L

2 and g̃5rcgL/B0 . We have takenr5rc at
z50. An approximate analytical solution to Eq.~11! can be
obtained in the limitẽ !1. For T̃,0 ~i.e., two-phase region!
and z̃,0, we use the method of matched asymptotic exp
sions to obtain

r̃ 5 r̃ out2aA2 T̃ tanh S aA2 T̃ z̃

A2 ẽ
D 2aA2 T̃1•••,

~12!

where r̃ out corresponds to the root of the equatio

05 g̃ z̃1a2T̃ r̃ 1 r̃ 3 that hasr̃ .aA2 T̃. For T̃.0 ~i.e., the
one-phase region! we can express the solution in terms of t
regular expansion,

r̃ 5 r̃ 01
6 ẽ 2g̃2 r̃ 0

~a2T̃13 r̃ 0
2!4

1•••, ~13!

where r̃ 0 is the real root of 05 g̃ z̃1a2T̃ r̃ 01 r̃ 0
3. The den-

sity profiles are antisymmetric aboutz̃50. Using Eqs.~10!,
~7! ands52 f T we can compute expressions for the bas
state pressurep0(z) and entropys0(z). Note that the entropy
s0(z) depends onc1(T). Further details of this are discusse
in Sec. V; for now we note that specification ofs0(z) is not
necessary for the development that follows.

Static density profiles are shown in Fig. 2 for tempe
tures both above and below the critical temperature. The
rameter values used to calculate these profiles
eDL51024, a54.85 andg̃51.63131024 whereeDL

2 5 ẽ 2/
1873D. M. Anderson and G. B. McFadden
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g̃. The parametersa2 and g̃ were chosen to fit as closely a
possible the density profiles shown in Berget al. far above
the critical temperature~see their Fig. 1!. The dashed curve
corresponds to the density profile at the critical temperat
Above the critical temperature, there is a single stratifi
phase. Below the critical temperature, the fluid separates
two stratified phases. Again, we point out that while the
profiles do not embody the quantitative behavior in terms
critical exponents, they do capture the qualitative behavio
the density near the critical point.

It is interesting to note that there is a significant amo
of stratification which occurs over a relatively small leng
scale. While this stratification often plagues those seekin
make precise measurements of physical quantities of n
critical fluids such as xenon, it can also be seen as a un
feature through which phenomena that normally occur
much larger length scales, such as those common in oc
ography or atmospheric sciences, can be studied in the l
ratory.

B. Internal wave frequencies

We follow the analysis of Berget al.4 and seek neutrally
stable wave modes by introducing perturbations to the ba
state solution as follows:

r5r0~z!1 r̂~z!cos~qxx!cos~qyy!eivt, ~14a!

u501û~z!sin~qxx!cos~qyy!eivt, ~14b!

v501 v̂~z!cos~qxx!sin~qyy!eivt, ~14c!

w501ŵ~z!cos~qxx!cos~qyy!eivt, ~14d!

p5p0~z!1 p̂~z!cos~qxx!cos~qyy!eivt, ~14e!

s5s0~z!1 ŝ~z!cos~qxx!cos~qyy!eivt, ~14f!

FIG. 2. This figure shows the static density profiles representing solution
Eq. ~11!. Each curve corresponds to a different temperature as indica
The dashed curve corresponds to the density profile at the critical tem
ture. Above the critical temperature, there is a single stratified phase. B
the critical temperature, the fluid separates into two stratified phases.
parameter values used to calculate these profiles areeDL51024, a54.85,

g̃51.63131024.
1874 Phys. Fluids, Vol. 9, No. 7, July 1997
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whereqx5p j /ax and qy5pk/ay are the wavenumbers in
the two horizontal directions with integer values forj and
k and v is the frequency. Note that we are interested
natural wave modes confined to the box and therefore ha
discrete rather than a continuous set of wave vectors. In f
the modes we describe below havej5k51. The form for the
velocity components has been chosen to allowuW •n̂50 on
each wall.

As a simplification, we shall consider incompressib
perturbations. In physical terms, this means that the respo
of a fluid parcel to a vertical perturbation is associated w
changes in the background density gradient rather with
further compression of the parcel. That is, although
basic-state density profile develops as a result of the la
compressibility of the fluid near its critical point, acoust
waves do not interact strongly with internal gravity wave
This can be put in more quantitative terms if we consider
Brunt–Väisälä frequency,

NBV
2 52

g

r

]r

]z
2
g2

c2
, ~15!

wherec is the acoustic sound speed. This quantity measu
the fluid’s oscillatory response to stratification an
compression.52 Berg et al. argued that for the near-critica
xenon system under consideration, the Brunt–Va¨isälä fre-
quency could be approximated by the stratification te
alone. This was based on a direct comparison for xenon
the first and second terms in Eq.~15!. Since we expect tha
our density profiles approximate theirs in the bulk regio
and that in the interfacial layer the density gradients u
here may be quite large, we anticipate that this is a reas
able approximation to pursue. This can be stated more
mally in terms of incompressible perturbations if we co
sider the equation of statep5p(s,r). It follows that

Dp

Dt
5

]p

]sU
r

Ds

Dt
1

]p

]rU
s

Dr

Dt
5c2

Dr

Dt
, ~16!

wherec25]p/]r is the~adiabatic! sound speed and we hav
usedDs/Dt50. Since the basic state has no flow and var
only in the vertical direction we can reduce this to a sta
ment about the perturbed quantities~denoted by primes!,

S ]r8

]t
1w8

dr0
dz D5

1

c2S ]p8

]t
1w8

dp0
dz D . ~17!

In terms of dimensionless quantities, the conditi
Lg/c2!1 reveals at leading order the condition of incom
pressible perturbations]r8/]t1w8dr0 /dz50, or ¹•uW 850
using ~1a!.

We insert the expansions~14! into the governing equa
tions ~1!, use the condition of incompressible perturbatio
linearize and find that

ivr̂1ŵ
dr0
dz

50, ~18a!

qxû1qyv̂1
dŵ

dz
50, ~18b!
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ivr0û2qxp̂5Kr0qxS q2r̂2
d2r̂

dz2
D , ~18c!

ivr0v̂2qyp̂5Kr0qyS q2r̂2
d2r̂

dz2
D , ~18d!

ivr0ŵ1
dp̂

dz
52 r̂g1Kr0S 2q2

dr̂

dz
1
d3r̂

dz3
D 1K r̂

d3r0
dz3

,

~18e!

whereq25qx
21qy

2 . Note that by virtue of the incompressib
perturbation assumption, the equation for entropys de-
couples and is not needed to compute the frequency. T
equations can be combined to obtain the single perturba
equation,

F12
q2

v2M
2Gd2ŵdz2 2FN2

g
1
q2

v2

1

r0

d~r0M
2!

dz Gdŵdz
2q2F12

N2

v2 2
q2

v2M
2Gŵ50, ~19!

where

N252
g

r0

dr0
dz

, ~20a!

M25
K

r0
S dr0
dz D 2. ~20b!

The boundary conditions are that the vertical componen
the velocity vanishes on the upper and lower bounda
ŵ(L)5ŵ(2L)50. This is an eigenvalue problem where t
eigenvalue is the frequencyv and the eigenfunctionŵ char-
acterizes the wave mode.

It is of particular interest to note that this is a secon
order system. The model used by Berget al. for the single-
phase region, which is also second-order, can be obtaine
takingK50 ~i.e.,M250) in Eq. ~19!. That is, the inclusion
of the nonclassical terms in the incompressible limit does
result in a higher-order differential equation relative to th
obtained for the classical model. However, we note here~and
show later! that if we include the effects of compressib
perturbations the result is a set of two coupled second-o
equations. We present those equations and discuss the
more detail in Sec. V.

We have solved the eigenvalue problem~19! using a
method given by Keller53 whereby we replace one of th
homogeneous boundary conditions with an independen
homogeneous one. The integration of the resulting inhom
geneous boundary value problem was done us
SUPORT.54 This code uses a superposition of linearly ind
pendent solutions coupled with an orthonormalization pro
dure to maintain their~numerical! independence. The inte
grations were performed using either an Adams-type met
or a Runge–Kutta method. The eigenvaluev and eigenfunc-
tion ŵ(z) which satisfy the original homogeneous bounda
condition were then obtained iteratively.

Figure 3 shows the internal wave frequencies obtai
experimentally~solid points! and theoretically using the re
stricted cubic model~dashed curves! by Berget al. and the
Phys. Fluids, Vol. 9, No. 7, July 1997
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theoretical predictions of the present diffuse-interface
proach using the van der Waals model~solid curves!. The
parameter values used for the diffuse-interface calculati
areeDL51024, a54.85 andg̃51.63131024. The value of
eDL used here was chosen to be well within the converge
region~with respect to the internal wave frequencies! shown
in Fig. 4.

Figure 4 shows the dependence of the frequency on
parametereDL . The solid curves correspond to the upper a
lower modes atT5Tc22.8972 mK and the dashed curve
correspond to the upper and lower modes atT5Tc
175.3272 mK. For these temperatures, the results are
verged for values ofeDL smaller than 1021 or 1022. The

FIG. 3. This figure shows the internal wave frequenciesV5v/2p ~in Hz!
obtained experimentally by Berget al. ~data points!, the theoretical predic-
tions by Berget al. ~dashed curves! using two separate models above an
below the critical temperature coupled with a restricted cubic model for
equation of state and the theoretical predictions of the present diff
interface approach~solid curves! using a van der Waals equation of stat
The vertical dashed line indicates the critical temperature. The param
values used for the diffuse-interface calculations areeDL51024, a54.85

and g̃51.63131024.

FIG. 4. This figure shows the dependence of the internal wave frequen

on the parametereDL . We have useda54.85 andg̃51.63131024. The
solid curves correspond to the upper and lower modes forT5Tc22.8972
mK and the dashed curves correspond to the upper and lower mode
T5Tc175.3272 mK.
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most significant departure from the converged value occ
for the lower mode andT,Tc and indicates that the resul
can become very sensitive to values ofeDL greater than
1022.

There are a number of comparisons that can be m
between the theoretical results predicted with the sin
diffuse-interface model and those obtained by Berget al.us-
ing two separate models. While by design the diffus
interface model agrees with the Berget al. theory for tem-
peratures well above the critical temperature~recall that the
parameters in the present equation of state were chose
that the density profile matches that of the Berget al. theory
well above the critical temperature!, the difference become
more pronounced as the temperature is decreased. A
shall see below and in the next figure, this difference can
attributed in full to the difference between the two equatio
of state used in the two models. That is, the diffuse-interf
results differ from those of Berget al. because the variation
with temperature of the density profiles obtained with t
van der Waals equation of state used here does not prec
match that of the density profiles obtained using the
stricted cubic model. This may have important consequen
in other studies using diffuse-interface models and an eq
tion of state similar to the van der Waals model used h
~for example, full numerical simulations of the governin
equations!. The present study gives an indication of how t
equation of state affects the results. Another result of
diffuse-interface model is the premature termination of
frequency curves below the critical temperature. As we s
see below, this is the result of a breakdown of the dist
bance equation~19! as the coefficient of the termd2ŵ/dz2

vanishes.

FIG. 5. This figure shows a direct comparison of the frequency calcul
using the classical model and that calculated with the diffuse-inter
model. In each case we have used~10! as the equation of state. The vertic
dashed line indicates the critical temperature. We find that in this case
diffuse-interface model~solid curves! recovers the classical model~dashed
curves! given by Berget al.The dashed–dotted line in this figure indicat
the location where the coefficient 12q2M 2/v2 of the second-order term in
Eq. ~19! is predicted to vanish, and hence indicates the boundary bey
which we cannot compute with the present model in the incompress
perturbation limit. Since this coefficient depends on the vertical coordin
we have identified this boundary by evaluating the coefficient atz̃50,
where the density gradient, and henceM , is greatest.
1876 Phys. Fluids, Vol. 9, No. 7, July 1997
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Figure 5 shows a comparison of the frequency compu
using the single diffuse-interface model and that compu
using the two separate models of Berget al., wherein each
casethe equation of state~10! is used. Again the solid curve
show the diffuse-interface results~with the same paramete
values as shown in Fig. 3! and the dashed curves show th
classical results. This comparison shows that with the exc
tion of the regions below the critical temperature where
disturbance equation breaks down~see below!, the diffuse-
interface results reproduce the classical results. This in
cates that it is the use of the simpler equation of state~10! in
the present model, rather than an inherent difference betw
the diffuse and sharp-interface models, which accounts
the differences between the theoretical predictions show
Fig. 3.

The disturbance equation~19! is a second-order equatio
whose leading coefficient 12q2M2/v2, as noted, may van
ish. Although this coefficient depends on the vertical coor
nate, we can estimate the point at which it first vanishes
evaluating it atz̃50, where the density gradient, and hen
M , is largest. In terms of the frequencyV5v/2p ~in Hz!
and temperatureT this boundary is given by

V

Ag/L
5

~qL!a2

2pA2 g̃
UT2Tc

Tc
U. ~21!

Note that this result does not depend on the thickness of
interface. We have plotted this boundary in Fig. 5~dashed–
dotted line! for the parameter values as given above. T
boundary is consistent with the points at which we can
longer compute numerical solutions to the present mo
~i.e., where the solid curves terminate in Figs. 3 and 5!.

IV. DISCUSSION

In this section we discuss several of the issues raised
the above described analysis and numerical results. In
ticular we shall address possible improvements in terms
the equation of state used in the diffuse-interface model
also the issue of the limitations of the incompressible per
bation assumption.

The advantage of the equation of state employed in
present analysis is that from both a physical and mathem
cal viewpoint it is the simplest characterization of the ne
critical behavior. An equation of state similar to this is typ
cally chosen for numerical simulations of the full set
equations. The disadvantage, as we have seen, is that it
not provide as accurate of a representation of the den
profiles as does the restricted cubic model, for example. O
improvement that can be made is to use a modified van
Waals equation of state~e.g., Rowlinson and Widom,11 and
Fisk and Widom55!. The modified van der Waals equation
state improves on the predictions in terms of critical exp
nents relative to the van der Waals equation of state but
allows an analytical solution for the density profiles.

The numerical solution and analysis of the disturban
equation~19! showed that its leading coefficient can vanis
This indicates the presence of a singularity. A key assum
tion used to derive this equation was that the perturbati
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were incompressible. Although we have used a simple eq
tion of state and have used approximate techniques to w
down the basic-state density profile, it seems quite clear
a more accurate representation of the density profile s
ultimately suffer the same consequences. In order to fur
understand this singularity, we shall rederive the disturba
equations without making the assumption of incompressi
ity. Using the same approach as described in Sec. III B,
find that the disturbance equations that retain the effect
compressibility are given by

A1p̂1A2

dp̂

dz
1A3

d2p̂

dz2
1A4q̂1A5

dq̂

dz
1A6

d2q̂

dz2
50,

~22a!

B1p̂1B2

dp̂

dz
1B4q̂1B5

dq̂

dz
1B6

d2q̂

dz2
50, ~22b!

whereq̂5r0ŵ and the~variable! coefficientsAi andBi are
given in Appendix A.

These are two coupled second-order equations des
ing a ‘‘diffuse/compressible’’ flow. It is of interest to recove
several lower-order cases from this system; that is,
‘‘diffuse/incompressible,’’ ‘‘classical/compressible’’ an
‘‘classical/incompressible’’ cases.

The ‘‘diffuse/incompressible’’ case can be obtained fo
mally by setting 1/c2(z)50 in the expressions in Appendi
A. In this case, the coefficientsA2 , A3 andB2 all vanish. It
can then be easily seen that Eqs.~22! reduce to a second
order equation forq̂, or equivalently, forŵ @see Eq.~19!#.
Therefore, in the context of the diffuse-interface formulatio
the incompressible limit is singular.

This is in contrast to the classical case, as can be se
we compare the ‘‘classical/compressible’’ and ‘‘classic
incompressible’’ cases. First, to obtain the classical~single-
phase! description from Eqs.~22! we takeK50. Here, the
coefficientsA2 , A3 andA6 vanish. It is again easy to see th
the resulting coupled equations forp̂ andq̂ can be reduced to
a second-order equation forq̂. This represents the ‘‘classica
compressible’’ case. In the ‘‘classical/incompressible’’ ca
which again we can obtain by further setting 1/c2(z)50, we
find that the coefficientB2 vanishes. Therefore, in the cla
sical case, the disturbance equations are second-order re
less of whether or not the effects of compressibility are
cluded. The above description shows that the limit
incompressible perturbations is a regular limit in the class
formulation but is a singular limit in the diffuse-interfac
formulation.

In order to solve Eqs.~22!, the sound speed must first b
specified. This, however, cannot be calculated from the c
sical van der Waals equation of state alone. A thermal eq
tion of state, consistent with the van der Waals equat
must be given.51

For the present purposes, we would like only to confi
that the inclusion of the terms due to compressibility relie
the singularity observed in the incompressible calculati
and allow us to calculate frequencies at lower temperatu
Therefore, we shall not be concerned with the specific fo
used for the sound speed. In the single-phase region, we
Phys. Fluids, Vol. 9, No. 7, July 1997
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ve

used the ‘‘linear model’’ as given by Hohenberg an
Barmatz2 to compute the sound speed. Note that this mo
is used to compute the sound speed only; we still use the
der Waals equation of state to compute the density profi
Our calculations show that the inclusion of compressibil
effects in the one-phase region lead to negligible correcti
in terms of the resulting internal wave frequencies. This is
be expected based on the fact that our incompressible ca
lations encountered no difficulty in the one-phase regi
That is, the inclusion of compressibility in the one-pha
region represents a regular perturbation. This reinforces
statements given by Berget al.4 who argued that the com
pressibility effects should be negligible with respect to t
internal gravity wave frequency predictions. The above
scribed ‘linear model’ applies in the classical sense be
the critical point, in that it can be used to calculate the sou
speed on either side of a sharp interface. However, ther
no rigorous way of connecting the two profiles through t
diffuse-interface used in the present calculations. Theref
in the two-phase region we have used a constant value
the sound speed in order to solve the eigenvalue probl
Although thisad hocprescription for the sound speed do
not provide an accurate approximation to the true sou
speed, which can vary significantly in the vertical directio
it is sufficient for our purposes in that it is nonzero ever
where and can be made to represent the true sound spe
an average sense. We have found that this approach do
fact allow us to calculate internal wave frequencies beyo
the line of singularity shown in Fig. 5. Therefore, we ca
conclude that the effects of compressibility relieve this s
gularity and may not be negligible when using the diffus
interface formulation as we have presented here.

As an additional check, we have calculated the solutio
for the case where the capillarity terms are included in
basic-state density profile while the terms involvingM2 and
its derivatives are ignored in anad hocway in Eq. ~19!.
From the point of view of the perturbation equation, the s
tem behaves as if it were in a single phase, with the den
profile represented as before in both the one-phase and
phase regions. The results of this calculation are graphic
identical to the dashed curves shown in Fig. 5, which rep
sent the sharp-interface model results. Unlike the full inco
pressible case where the capillary termsM2 are included in
the perturbation equation~19!, these calculations are not lim
ited by the line of singularity.

V. CONCLUSIONS

We have used a diffuse-interface model to describe
ternal gravity waves in near-critical xenon. This analysis e
tends that of Berget al.,4 who studied the problem exper
mentally and theoretically using separate hydrodynam
descriptions above and below the critical temperature. T
present diffuse-interface description of the hydrodynam
can be used to calculate the internal wave frequencies
above and below the critical temperature. We have stud
the sensitivity of the model to the value of the gradient e
ergy coefficient. For sufficiently small values of the gradie
1877D. M. Anderson and G. B. McFadden
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energy coefficient, the single diffuse-interface model rec
ers the classical results when the same equation of sta
used in each case.

An unexpected result identified here is that the inco
pressible flow limit is singular in the context of the diffus
interface limit. That is, when the effects of compressibil
are neglected, the internal wave problem is governed b
second-order perturbation equation, but when the effect
compressibility are included, the problem is governed b
system of two second-order perturbation equations. This
contrast to the classical case where the limit of incompre
ibility is regular.
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APPENDIX A: COEFFICIENTS OF COMPRESSIBLE
EQUATIONS

The following are the coefficients appearing in the co
pressible perturbation equations~22!.

A15
1

iv Fq22 v2

c2~z!
1Kq2r0S q2

c2~z!
2S 1

c2~z! D 9D G ,
~A1a!

A252
2Kq2

iv
r0S 1

c2~z! D 8
, ~A1b!

A352
Kq2

iv

r0
c2~z!

, ~A1c!

A45
NK~z!

g
2
Kq4

gv2 r0NK~z!1
Kq2

gv2 r0NK9 ~z!, ~A1d!

A5511
2Kq2

gv2 r0NK8 ~z!, ~A1e!

A65
Kq2

gv2 r0NK~z!, ~A1f!

B15
1

iv F 1r02 dr0
dz

1
v2

q2 S 1

r0c
2~z! D 8

1
g

r0c
2~z!

2
K

r0c
2~z!

d3r0
dz3 G , ~A1g!

B25
1

iv F v2

q2r0c
2~z!G , ~A1h!
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B452
1

gq2 SNK~z!

r0
D 8

2
NK~z!

v2r0
1

1

r0

1
K

gv2

NK~z!

r0

d3r0
dz3

, ~A1i!

B552
NK~z!

gq2r0
1

1

q2r0
2

dr0
dz

, ~A1j!

B652
1

q2r0
, ~A1k!

where

NK~z!52
g

r0

dr0
dz

2
g2

c2~z!
1

Kg

c2~z!

d3r0
dz3

. ~A2!
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