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Problem 1. Prime elements.

Definition 1. An element u € IL of a locale is prime if
i) u# 1 and
ii) For all a and b € L, if a A b < u then either a < u or b < u.

1. a) Show that for any locale L, there is a natural bijection between points of L. and prime
elements of L.

1. b ) Show that for a topological space X, an element U € & (X) is prime if and only if it
is the compliment of an irreducible closed subset.
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Problem 2. A “pointless” locale

Let L be the sublattice of &' (R) consisting of those open subsets U such that

Int (U) =U.
(These are called regular open subsets.) Show that:
(a) L is a locale

(b) L has no points.
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Problem 3. Stone Duality

(a) Show that the functor
0 : TOP — LOC

is left adjoint to
pt : LOC — TOP.

(b) Show that ny is an isomorphism if and only if X is sober, where 7 is the unit of the
adjunction.

(c) Show that €, is an isomorphism if and only if LL is spatial, where € is the co-unit of the
adjunction.

(d) Deduce that & - pt restricts to an equivalence between sober topological spaces and
spatial locales.

(e) Deduce that sober spaces are reflective in TOP.
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Problem 4. The Sierpinski space
Definition 2. The Sierpinski space Sp is the set {0, 1} equipped with the topology

o (Sp) = {{1}7 Q)v {07 1}}

(a) Show that the Sierpinski space is sober.

(b) Show that there is a functor, defined on objects as

Fr(-):Set — Frm
AHﬁ(SpA),

which is left adjoint to the forgetful functor from frames to sets. (In particular, one
sees that & (Sp) is the free frame on one generator.)

Remark. The functor Fr (- ) sends a set A to the free frame on the set A. From this exercise
we see that free frames are spatial. Since every frame is the quotient frame of a free frame,
it follows dually that any locale is a sublocale of a spatial locale.
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Problem 5. Locales from a topos.

Let &£ be a topos and E and object in £. Show that the poset of subobjects of £ naturally
form a locale.



