Weekly Homework 8

Instructor: David Carchedi Topos Theory

June 24, 2013

Problem 1. Subobject classifiers

Read the section on subobject classifiers in the lecture notes entitled "Lecture 8" posted on the website. In these, it is proven that any presheaf category $\mathbf{Set}^{\mathscr{C}^{op}}$ has a subobject classifier.

- (a) Prove that if J is a Grothendieck topology on \mathscr{C} , then $\mathscr{E} = \mathbf{Sh}_J(\mathscr{C})$ has a subobject classifier Ω_J .
- (b) Prove that if \mathscr{D} is any category with a subobject classifier

 $t: T \to \Omega,$

then T must be the terminal object.

Problem 2. Lawvere-Tierney topologies

(a) Show that if Ω is a subobject classifier of a topos \mathscr{E} , that taking intersections of subobjects induces a morphism

$$\wedge: \Omega \times \Omega \to \Omega.$$

Definition 1. A Lawvere-Tierney topology on a topos \mathscr{E} , with subobject classifier

 $t: 1 \to \Omega$

is an idempotent J of Ω (i.e. $J^2 = J$) such that the following two diagrams commute

(b) Prove that for any small category C, there is a bijection between Grothendieck topologies on C and Lawvere-Tierney topologies on Set^{Cop}.
Hint: See HW7. (Also, this exercise may be helpful in proving HW7.)

Problem 3. Slices of topoi

Let (\mathcal{C}, J) be a Grothendieck site and let $F \in \mathbf{Sh}_J(\mathcal{C})$ be a sheaf. Describe a Grothendieck topology $J|_F$ on $\int_{\mathcal{C}} F,$

such that

$$\mathbf{Sh}_{J}(\mathscr{C})/F \simeq \mathbf{Sh}_{J|_{F}}\left(\int_{\mathscr{C}}F\right).$$

This proves that for any Grothendieck topos \mathscr{E} , and any object $E \in \mathscr{E}, \mathscr{E}/E$ is a Grothendieck topos.

See HW1, Problem 2 f).