Weekly Homework 5

Instructor: David Carchedi Topos Theory

May 18, 2013

Problem 1. The underlying space of a sheaf

Let \mathbb{TOP} denote the category of \mathcal{U} -small topological spaces and \mathbb{TOP} denote the category of \mathcal{V} -small topological spaces, where $\mathcal{U} \in \mathcal{V}$ are both Grothendieck universes, and similarly denote **Set** and **Set**. Let **Sh**(\mathbb{TOP}) denote the category of sheaves of \mathcal{U} -small sets, and **Sh**(\mathbb{TOP}) the category of sheaves of \mathcal{V} -small sets. Let

$$\tau:\mathbb{TOP}\hookrightarrow\widehat{\mathbb{TOP}}$$

be the canonical functor.

(a) Show that the left Kan extension $U := Lan_{\widehat{y}}(\tau) : \widehat{\mathbf{Set}}^{\mathbb{TOP}^{op}} \to \widehat{\mathbb{TOP}}$ of τ along the Yoneda embedding

$$\widehat{y}: \mathbb{TOP} \hookrightarrow \widehat{\mathbf{Set}}^{\mathbb{TO}}$$

sends a presheaf F of \mathcal{V} -small sets to a space with underlying set F(*), where * denotes the terminal space. Conclude that if F is in the subcategory $\mathbf{Set}^{\mathbb{TOP}^{op}}$, then U(F) is in the subcategory \mathbb{TOP}^{e} .

(b) Show that the Yoneda embedding $y : \mathbb{TOP} \hookrightarrow \mathbf{Sh}(\mathbb{TOP})$ has a left adjoint.

Problem 2. Compactly Generated Spaces as Sheaves

Recall that a topological space X is **compactly generated** if a subset $A \subseteq X$ is open if $f^{-1}(A)$ is open for all maps $f: T \to X$, with T compact Hausdorff. Denote by \mathbb{LCH} the category of locally compact Hausdorff spaces, and define the functor

$$\varphi: \mathbb{TOP} \to \mathbf{Sh}\left(\mathbb{LCH}\right)$$

by

$$\varphi\left(X\right)\left(L\right) = \mathbf{Hom}_{\mathbb{TOP}}\left(L,X\right).$$

(a) Show that the essential image of φ in **Sh** (\mathbb{LCH}) is equivalent to the category of compactly generated spaces.

Hint: Modify arguments from the last exercise to show that φ has a left adjoint.