Weekly Homework 10

Instructor: David Carchedi Topos Theory

July 12, 2013

Problem 1. Epimorphisms and Monomorphisms in a Topos

Let \mathscr{E} be a topos.
(a) Let $m: A \rightarrow B$ be a monomorphism in \mathscr{E}, and let

$$
\phi_{m}: B \rightarrow \Omega
$$

be a map to the subobject classifier of \mathscr{E} classifying m, and similarly denote by ϕ_{B} the map classifying the maximal subobject of B (i.e. $i d_{B}$). Denote by

$$
m^{\prime}: E=\varliminf_{\longleftarrow}(B \rightrightarrows \Omega) \rightarrow B
$$

the equalizer diagram for ϕ_{m} and ϕ_{B}. Show that m and m^{\prime} represent the same subobject of B. Deduce that a morphism in a topos is an isomorphism if and only if it is both a monomorphism and an epimorphism.
(b) Let $f: X \rightarrow Y$ be a map of sets. Denote by

$$
X \times_{Y} X \rightrightarrows X
$$

the kernel pair of f and by

$$
Y \rightrightarrows Y \coprod_{X} Y
$$

the cokernel pair of f. Show that the coequalizer of the kernel pair and the equalizer of the cokernel pair both coincide with the the set $f(X)$. Deduce that for $f: X \rightarrow Y$ a map in \mathscr{E},

$$
X \rightarrow \varliminf_{\rightleftarrows}\left(Y \rightrightarrows Y \coprod_{X} Y\right) \rightarrow Y
$$

and

$$
X \rightarrow \underset{\longrightarrow}{\lim }\left(X \times_{Y} X \rightrightarrows X\right) \rightarrow Y
$$

are both factorizations of f by an epimorphism follows by a monomorphism.
(c) Show that the factorization of a morphism f in \mathscr{E} into an epimorphism followed by a monomorphism is unique up to isomorphism. Deduce that $f: X \rightarrow Y$ is an epimorphism, if and only if the canonical map

$$
\lim _{\leftrightarrows}\left(X \times_{Y} X \rightrightarrows X\right) \rightarrow Y
$$

is an isomorphism.

Problem 2. Geometric Morphisms between Presheaf Topoi

Let $\varphi: \mathscr{C} \rightarrow \mathscr{D}$ be a functor between small categories. Denote by

$$
\varphi^{*}: \operatorname{Set}^{\mathscr{D}^{o p}} \rightarrow \operatorname{Set}^{\mathscr{C}^{o p}}
$$

the obvious restriction functor. Show:
(a) φ^{*} has a left adjoint $\varphi_{!}:=\operatorname{Lan}_{y_{\mathscr{C}}} y_{\mathscr{D}} \circ \varphi$.
(b) φ^{*} preserves colimits. Deduce that it has a right adjoint φ_{*} given by

$$
\varphi_{*}(Y)(D)=\operatorname{Hom}\left(\varphi^{*} y(D), Y\right)
$$

(c) Show the following are equivalent:
i) The pair $\left(\varphi_{*}, \varphi^{*}\right)$ is a geometric embedding.
ii) The counit $\varphi^{*} \varphi_{*} \Rightarrow i d$ is an isomorphism.
iii) The unit $i d \Rightarrow \varphi^{*} \varphi$! is an isomorphism.
iv) The functor φ is full and faithful.

Problem 3. Étale Geometric Morphisms

Let $k: B \rightarrow A$ be a morphism in a topos \mathscr{E}. Show that the functor

$$
k^{*}: \mathscr{E} / A \rightarrow \mathscr{E} / B
$$

induced by pullback has both a left adjoint \sum_{k} and a right adjoint \prod_{k}. Conclude that the pair $\left(k_{*}=\prod_{k}, k^{*}\right)$ constitute a geometric morphism

$$
\mathscr{E} / B \rightarrow \mathscr{E} / A
$$

Geometric morphisms of this form are called étale.

